Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Mol Diagn ; 25(12): 932-944, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37813298

RESUMEN

Recurrent gene rearrangements result in gene fusions that encode chimeric proteins, driving the pathogenesis of many hematologic neoplasms. The fifth edition World Health Organization classification and International Consensus Classification 2022 include an expanding list of entities defined by such gene rearrangements. Therefore, sensitive and rapid methods are needed to identify a broad range of gene fusions for precise diagnosis and prognostication. In this study, we validated the FusionPlex Pan-Heme panel analysis using anchored multiplex PCR/targeted RNA next-generation sequencing for routine clinical testing. Furthermore, we assessed its utility in detecting gene fusions in myeloid and lymphoid neoplasms. The validation cohort of 61 cases demonstrated good concordance between the FusionPlex Pan-Heme panel and other methods, including chromosome analysis, fluorescence in situ hybridization, RT-PCR, and Sanger sequencing, with an analytic sensitivity and specificity of 95% and 100%, respectively. In an independent cohort of 28 patients indicated for FusionPlex testing, gene fusions were detected in 21 patients. The FusionPlex Pan-Heme panel analysis reliably detected fusion partners and patient-specific fusion sequences, allowing accurate classification of hematologic neoplasms and the discovery of new fusion partners, contributing to a better understanding of the pathogenesis of the diseases.


Asunto(s)
Neoplasias Hematológicas , Neoplasias , Humanos , Hibridación Fluorescente in Situ , Neoplasias Hematológicas/diagnóstico , Neoplasias Hematológicas/genética , Secuencia de Bases , Fusión Génica , Análisis de Secuencia de ARN/métodos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Hemo , Proteínas de Fusión Oncogénica/genética , Neoplasias/genética
2.
Hepatol Commun ; 7(3): e0076, 2023 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-36809345

RESUMEN

BACKGROUND AND AIM: Copper is an essential trace metal serving as a cofactor in innate immunity, metabolism, and iron transport. We hypothesize that copper deficiency may influence survival in patients with cirrhosis through these pathways. METHODS: We performed a retrospective cohort study involving 183 consecutive patients with cirrhosis or portal hypertension. Copper from blood and liver tissues was measured using inductively coupled plasma mass spectrometry. Polar metabolites were measured using nuclear magnetic resonance spectroscopy. Copper deficiency was defined by serum or plasma copper below 80 µg/dL for women or 70 µg/dL for men. RESULTS: The prevalence of copper deficiency was 17% (N=31). Copper deficiency was associated with younger age, race, zinc and selenium deficiency, and higher infection rates (42% vs. 20%, p=0.01). Serum copper correlated positively with albumin, ceruloplasmin, hepatic copper, and negatively with IL-1ß. Levels of polar metabolites involved in amino acids catabolism, mitochondrial transport of fatty acids, and gut microbial metabolism differed significantly according to copper deficiency status. During a median follow-up of 396 days, mortality was 22.6% in patients with copper deficiency compared with 10.5% in patients without. Liver transplantation rates were similar (32% vs. 30%). Cause-specific competing risk analysis showed that copper deficiency was associated with a significantly higher risk of death before transplantation after adjusting for age, sex, MELD-Na, and Karnofsky score (HR: 3.40, 95% CI, 1.18-9.82, p=0.023). CONCLUSIONS: In advanced cirrhosis, copper deficiency is relatively common and is associated with an increased infection risk, a distinctive metabolic profile, and an increased risk of death before transplantation.


Asunto(s)
Cobre , Cirrosis Hepática , Masculino , Humanos , Femenino , Estudios Retrospectivos , Factores de Riesgo
3.
Mod Pathol ; 34(7): 1373-1383, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33727696

RESUMEN

Translocations involving FN1 have been described in a variety of neoplasms that share the presence of a cartilage matrix and may also contain a variable extent of calcification. Fusions of FN1 to FGFR1 or FGFR2 have been reported in nine soft tissue chondromas, mostly demonstrated indirectly by FISH analysis. Delineation of FN1 fusions with various partner genes will facilitate our understanding of the pathogenesis and diagnostic classification of these neoplasms. In this study, we present molecular, clinical, and pathologic features of 12 cartilaginous soft tissue neoplasms showing a predilection for the TMJ region and the distal extremities. We analyzed for gene fusions with precise breakpoints using targeted RNA-seq with a 115-gene panel. We detected gene fusions in ten cases, including three novel fusions, FN1-MERTK, FN1-NTRK1, and FN1-TEK, each in one case, recurrent FN1-FGFR2 fusion in five cases, FN1-FGFR1 in one case, and FGFR1-PLAG1 in one case. The breakpoints in the 5' partner gene FN1 ranged from exons 11-48, retaining the domains of a signal peptide, FN1, FN2, and/or FN3, while the 3' partner genes retained the transmembrane domain, tyrosine kinase (TK) domains, and/or Ig domain. The tumors are generally characterized by nodular/lobular growth of polygonal to stellate cells within a chondroid matrix, often accompanied by various patterns of calcification, resembling those described for the chondroblastoma-like variant of soft tissue chondroma. Additional histologic findings include extensive calcium pyrophosphate dihydrate deposition in two cases and features resembling tenosynovial giant cell tumor (TGCT). Overall, while the tumors from our series show significant morphologic overlap with chondroblastoma-like soft tissue chondroma, we describe findings that expand the morphologic spectrum of these neoplasms and therefore refer to them as "calcified chondroid mesenchymal neoplasms." These neoplasms represent a spectrum of chondroid/cartilage matrix-forming tumors harboring FN1-receptor TK fusions that include those classified as soft tissue chondroma as well as chondroid TGCT.


Asunto(s)
Fibronectinas/genética , Neoplasias de Tejido Conjuntivo/genética , Neoplasias de Tejido Conjuntivo/patología , Neoplasias de los Tejidos Blandos/genética , Neoplasias de los Tejidos Blandos/patología , Adulto , Anciano , Calcinosis/genética , Calcinosis/patología , Femenino , Factor 2 de Crecimiento de Fibroblastos/genética , Humanos , Masculino , Persona de Mediana Edad , Fusión de Oncogenes/genética , Receptor Tipo 1 de Factor de Crecimiento de Fibroblastos/genética , Receptor TIE-2/genética , Receptor trkA/genética , Tirosina Quinasa c-Mer/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...