Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 68
1.
J Gen Physiol ; 156(6)2024 Jun 03.
Article En | MEDLINE | ID: mdl-38709176

Dilated cardiomyopathy (DCM) is a condition characterized by impaired cardiac function, due to myocardial hypo-contractility, and is associated with point mutations in ß-cardiac myosin, the molecular motor that powers cardiac contraction. Myocardial function can be modulated through sequestration of myosin motors into an auto-inhibited "super-relaxed" state (SRX), which may be further stabilized by a structural state known as the "interacting heads motif" (IHM). Here, we sought to determine whether hypo-contractility of DCM myocardium results from reduced function of individual myosin molecules or from decreased myosin availability to interact with actin due to increased IHM/SRX stabilization. We used an established DCM myosin mutation, E525K, and characterized the biochemical and mechanical activity of wild-type and mutant human ß-cardiac myosin constructs that differed in the length of their coiled-coil tail, which dictates their ability to form the IHM/SRX state. We found that short-tailed myosin constructs exhibited low IHM/SRX content, elevated actin-activated ATPase activity, and fast velocities in unloaded motility assays. Conversely, longer-tailed constructs exhibited higher IHM/SRX content and reduced actomyosin ATPase and velocity. Our modeling suggests that reduced velocities may be attributed to IHM/SRX-dependent sequestration of myosin heads. Interestingly, longer-tailed E525K mutants showed no apparent impact on velocity or actomyosin ATPase at low ionic strength but stabilized IHM/SRX state at higher ionic strength. Therefore, the hypo-contractility observed in DCM may be attributable to reduced myosin head availability caused by enhanced IHM/SRX stability in E525K mutants.


Cardiac Myosins , Cardiomyopathy, Dilated , Ventricular Myosins , Animals , Humans , Actins/metabolism , Actins/genetics , Cardiomyopathy, Dilated/genetics , Cardiomyopathy, Dilated/metabolism , Cardiomyopathy, Dilated/physiopathology , Mutation , Myocardial Contraction/physiology , Ventricular Myosins/genetics , Ventricular Myosins/metabolism , Cardiac Myosins/genetics , Cardiac Myosins/metabolism
2.
J Biol Chem ; 300(1): 105516, 2024 Jan.
Article En | MEDLINE | ID: mdl-38042485

Class III myosins localize to inner ear hair cell stereocilia and are thought to be crucial for stereocilia length regulation. Mutations within the motor domain of MYO3A that disrupt its intrinsic motor properties have been associated with non-syndromic hearing loss, suggesting that the motor properties of MYO3A are critical for its function within stereocilia. In this study, we investigated the impact of a MYO3A hearing loss mutation, H442N, using both in vitro motor assays and cell biological studies. Our results demonstrate the mutation causes a dramatic increase in intrinsic motor properties, actin-activated ATPase and in vitro actin gliding velocity, as well as an increase in actin protrusion extension velocity. We propose that both "gain of function" and "loss of function" mutations in MYO3A can impair stereocilia length regulation, which is crucial for stereocilia formation during development and normal hearing. Furthermore, we generated chimeric MYO3A constructs that replace the MYO3A motor and neck domain with the motor and neck domain of other myosins. We found that duty ratio, fraction of ATPase cycle myosin is strongly bound to actin, is a critical motor property that dictates the ability to tip localize within filopodia. In addition, in vitro actin gliding velocities correlated extremely well with filopodial extension velocities over a wide range of gliding and extension velocities. Taken together, our data suggest a model in which tip-localized myosin motors exert force that slides the membrane tip-ward, which can combat membrane tension and enhance the actin polymerization rate that ultimately drives protrusion elongation.


Actins , Hearing Loss , Myosin Type III , Animals , Actins/genetics , Actins/metabolism , Adenosine Triphosphatases/genetics , Adenosine Triphosphatases/metabolism , Chlorocebus aethiops , COS Cells , Hearing Loss/genetics , Hearing Loss/metabolism , Hearing Loss/pathology , Myosin Type III/genetics , Myosin Type III/metabolism , Myosins/genetics , Myosins/metabolism , Stereocilia , Humans
3.
bioRxiv ; 2023 Dec 08.
Article En | MEDLINE | ID: mdl-38105932

Dilated cardiomyopathy (DCM) is characterized by impaired cardiac function due to myocardial hypo-contractility and is associated with point mutations in ß-cardiac myosin, the molecular motor that powers cardiac contraction. Myocardial function can be modulated through sequestration of myosin motors into an auto-inhibited "super relaxed" state (SRX), which is further stabilized by a structural state known as the "Interacting Heads Motif" (IHM). Therefore, hypo-contractility of DCM myocardium may result from: 1) reduced function of individual myosin, and/or; 2) decreased myosin availability due to increased IHM/SRX stabilization. To define the molecular impact of an established DCM myosin mutation, E525K, we characterized the biochemical and mechanical activity of wild-type (WT) and E525K human ß-cardiac myosin constructs that differed in the length of their coiled-coil tail, which dictates their ability to form the IHM/SRX state. Single-headed (S1) and a short-tailed, double-headed (2HEP) myosin constructs exhibited low (~10%) IHM/SRX content, actin-activated ATPase activity of ~5s-1 and fast velocities in unloaded motility assays (~2000nm/s). Double-headed, longer-tailed (15HEP, 25HEP) constructs exhibited higher IHM/SRX content (~90%), and reduced actomyosin ATPase (<1s-1) and velocity (~800nm/s). A simple analytical model suggests that reduced velocities may be attributed to IHM/SRXdependent sequestration of myosin heads. Interestingly, the E525K 15HEP and 25HEP mutants showed no apparent impact on velocity or actomyosin ATPase at low ionic strength. However, at higher ionic strength, the E525K mutation stabilized the IHM/SRX state. Therefore, the E525K-associated DCM human cardiac hypo-contractility may be attributable to reduced myosin head availability caused by enhanced IHM/SRX stability.

4.
bioRxiv ; 2023 Nov 13.
Article En | MEDLINE | ID: mdl-38014187

Inherited mutations in human beta-cardiac myosin (M2ß) can lead to severe forms of heart failure. The E525K mutation in M2ß is associated with dilated cardiomyopathy (DCM) and was found to stabilize the interacting heads motif (IHM) and autoinhibited super-relaxed (SRX) state in dimeric heavy meromyosin. However, in monomeric M2ß subfragment 1 (S1) we found that E525K enhances (3-fold) the maximum steady-state actin-activated ATPase activity (kcat) and decreases (6-fold) the actin concentration at which ATPase is one-half maximal (KATPase). We also found a 3 to 4-fold increase in the actin-activated power stroke and phosphate release rate constants at 30 µM actin, which overall enhanced the duty ratio 3-fold. Loaded motility assays revealed that the enhanced intrinsic motor activity translates to increased ensemble force in M2ß S1. Glutamate 525, located near the actin binding region in the so-called activation loop, is highly conserved and predicted to form a salt-bridge with another conserved residue (lysine 484) in the relay helix. Enhanced sampling molecular dynamics simulations predict that the charge reversal mutation disrupts the E525-K484 salt-bridge, inducing conformations with a more flexible relay helix and a wide phosphate release tunnel. Our results highlight a highly conserved allosteric pathway associated with actin activation of the power stroke and phosphate release and suggest an important feature of the autoinhibited IHM is to prevent this region of myosin from interacting with actin. The ability of the E525K mutation to stabilize the IHM likely overrides the enhanced intrinsic motor properties, which may be key to triggering DCM pathogenesis.

5.
Nat Commun ; 14(1): 3137, 2023 05 30.
Article En | MEDLINE | ID: mdl-37253724

Myosin Va is the molecular motor that drives intracellular vesicular transport, powered by the transduction of chemical energy from ATP into mechanical work. The coupling of the powerstroke and phosphate (Pi) release is key to understanding the transduction process, and crucial details of this process remain unclear. Therefore, we determined the effect of elevated Pi on the force-generating capacity of a mini-ensemble of myosin Va S1 (WT) in a laser trap assay. By increasing the stiffness of the laser trap we determined the effect of increasing resistive loads on the rate of Pi-induced detachment from actin, and quantified this effect using the Bell approximation. We observed that WT myosin generated higher forces and larger displacements at the higher laser trap stiffnesses in the presence of 30 mM Pi, but binding event lifetimes decreased dramatically, which is most consistent with the powerstroke preceding the release of Pi from the active site. Repeating these experiments using a construct with a mutation in switch I of the active site (S217A) caused a seven-fold increase in the load-dependence of the Pi-induced detachment rate, suggesting that the S217A region of switch I may help mediate the load-dependence of Pi-rebinding.


Actins , Myosins , Kinetics , Myosins/metabolism , Actins/metabolism , Mechanical Phenomena , Mutation , Adenosine Triphosphate/metabolism
6.
J Gen Physiol ; 155(3)2023 03 06.
Article En | MEDLINE | ID: mdl-36633586

Following binding to the thin filament, ß-cardiac myosin couples ATP-hydrolysis to conformational rearrangements in the myosin motor that drive myofilament sliding and cardiac ventricular contraction. However, key features of the cardiac-specific actin-myosin interaction remain uncertain, including the structural effect of ADP release from myosin, which is rate-limiting during force generation. In fact, ADP release slows under experimental load or in the intact heart due to the afterload, thereby adjusting cardiac muscle power output to meet physiological demands. To further elucidate the structural basis of this fundamental process, we used a combination of cryo-EM reconstruction methodologies to determine structures of the human cardiac actin-myosin-tropomyosin filament complex at better than 3.4 Å-resolution in the presence and in the absence of Mg2+·ADP. Focused refinements of the myosin motor head and its essential light chains in these reconstructions reveal that small changes in the nucleotide-binding site are coupled to significant rigid body movements of the myosin converter domain and a 16-degree lever arm swing. Our structures provide a mechanistic framework to understand the effect of ADP binding and release on human cardiac ß-myosin, and offer insights into the force-sensing mechanism displayed by the cardiac myosin motor.


Actins , Tropomyosin , Humans , Actins/metabolism , Tropomyosin/metabolism , Cardiac Myosins/metabolism , Myosins/metabolism , Actin Cytoskeleton/metabolism
7.
J Gen Physiol ; 155(2)2023 02 06.
Article En | MEDLINE | ID: mdl-36459134

During force-generating steps of the muscle crossbridge cycle, the tip of the myosin motor, specifically loop-4, contacts the tropomyosin cable of actin filaments. In the current study, we determined the corresponding effect of myosin loop-4 on the regulatory positioning of tropomyosin on actin. To accomplish this, we compared high-resolution cryo-EM structures of myosin S1-decorated thin filaments containing either wild-type or a loop-4 mutant construct, where the seven-residue portion of myosin loop-4 that contacts tropomyosin was replaced by glycine residues, thus removing polar side chains from residues 366-372. Cryo-EM analysis of fully decorated actin-tropomyosin filaments with wild-type and mutant S1, yielded 3.4-3.6 Å resolution reconstructions, with even higher definition at the actin-myosin interface. Loop-4 densities both in wild-type and mutant S1 were clearly identified, and side chains were resolved in the wild-type structure. Aside from loop-4, actin and myosin structural domains were indistinguishable from each other when filaments were decorated with either mutant or wild-type S1. In marked contrast, the position of tropomyosin on actin in the two reconstructions differed by 3 to 4 Å. In maps of filaments containing the mutant, tropomyosin was located closer to the myosin-head and thus moved in the direction of the C-state conformation adopted by myosin-free thin filaments. Complementary interaction energy measurements showed that tropomyosin in the mutant thin filaments sits on actin in a local energy minimum, whereas tropomyosin is positioned by wild-type S1 in an energetically unfavorable location. We propose that the high potential energy associated with tropomyosin positioning in wild-type filaments favors an effective transition to B- and C-states following release of myosin from the thin filaments during relaxation.


Actins , Tropomyosin , Myosins , Actin Cytoskeleton , Sarcomeres
8.
Elife ; 112022 11 24.
Article En | MEDLINE | ID: mdl-36422472

The auto-inhibited, super-relaxed (SRX) state of cardiac myosin is thought to be crucial for regulating contraction, relaxation, and energy conservation in the heart. We used single ATP turnover experiments to demonstrate that a dilated cardiomyopathy (DCM) mutation (E525K) in human beta-cardiac myosin increases the fraction of myosin heads in the SRX state (with slow ATP turnover), especially in physiological ionic strength conditions. We also utilized FRET between a C-terminal GFP tag on the myosin tail and Cy3ATP bound to the active site of the motor domain to estimate the fraction of heads in the closed, interacting-heads motif (IHM); we found a strong correlation between the IHM and SRX state. Negative stain electron microscopy and 2D class averaging of the construct demonstrated that the E525K mutation increased the fraction of molecules adopting the IHM. Overall, our results demonstrate that the E525K DCM mutation may reduce muscle force and power by stabilizing the auto-inhibited SRX state. Our studies also provide direct evidence for a correlation between the SRX biochemical state and the IHM structural state in cardiac muscle myosin. Furthermore, the E525 residue may be implicated in crucial electrostatic interactions that modulate this conserved, auto-inhibited conformation of myosin.


Cardiomyopathy, Dilated , Ventricular Myosins , Humans , Ventricular Myosins/genetics , Cardiac Myosins , Cardiomyopathy, Dilated/genetics , Myosins/genetics , Mutation , Myocardium , Adenosine Triphosphate
9.
J Am Soc Nephrol ; 33(11): 1989-2007, 2022 11.
Article En | MEDLINE | ID: mdl-36316095

BACKGROUND: Myo1e is a nonmuscle motor protein enriched in podocytes. Mutations in MYO1E are associated with steroid-resistant nephrotic syndrome (SRNS). Most of the MYO1E variants identified by genomic sequencing have not been functionally characterized. Here, we set out to analyze two mutations in the Myo1e motor domain, T119I and D388H, which were selected on the basis of protein sequence conservation. METHODS: EGFP-tagged human Myo1e constructs were delivered into the Myo1e-KO mouse podocyte-derived cells via adenoviral infection to analyze Myo1e protein stability, Myo1e localization, and clathrin-dependent endocytosis, which is known to involve Myo1e activity. Furthermore, truncated Myo1e constructs were expressed using the baculovirus expression system and used to measure Myo1e ATPase and motor activity in vitro. RESULTS: Both mutants were expressed as full-length proteins in the Myo1e-KO cells. However, unlike wild-type (WT) Myo1e, the T119I variant was not enriched at the cell junctions or clathrin-coated vesicles (CCVs). In contrast, D388H variant localization was similar to that of WT. The rate of dissociation of the D388H variant from cell-cell junctions and CCVs was decreased, suggesting this mutation affects Myo1e interactions with binding partners. ATPase activity and ability to translocate actin filaments were drastically reduced for the D388H mutant, supporting findings from cell-based experiments. CONCLUSIONS: T119I and D388H mutations are deleterious to Myo1e functions. The experimental approaches used in this study can be applied to future characterization of novel MYO1E variants associated with SRNS.


Myosin Type I , Nephrotic Syndrome , Animals , Humans , Mice , Mutation , Myosin Type I/genetics , Myosin Type I/metabolism , Nephrotic Syndrome/genetics , Steroids
10.
Front Physiol ; 13: 892979, 2022.
Article En | MEDLINE | ID: mdl-35755445

Small molecule cardiac troponin activators could potentially enhance cardiac muscle contraction in the treatment of systolic heart failure. We designed a small molecule, RPI-194, to bind cardiac/slow skeletal muscle troponin (Cardiac muscle and slow skeletal muscle share a common isoform of the troponin C subunit.) Using solution NMR and stopped flow fluorescence spectroscopy, we determined that RPI-194 binds to cardiac troponin with a dissociation constant KD of 6-24 µM, stabilizing the activated complex between troponin C and the switch region of troponin I. The interaction between RPI-194 and troponin C is weak (KD 311 µM) in the absence of the switch region. RPI-194 acts as a calcium sensitizer, shifting the pCa50 of isometric contraction from 6.28 to 6.99 in mouse slow skeletal muscle fibers and from 5.68 to 5.96 in skinned cardiac trabeculae at 100 µM concentration. There is also some cross-reactivity with fast skeletal muscle fibers (pCa50 increases from 6.27 to 6.52). In the slack test performed on the same skinned skeletal muscle fibers, RPI-194 slowed the velocity of unloaded shortening at saturating calcium concentrations, suggesting that it slows the rate of actin-myosin cross-bridge cycling under these conditions. However, RPI-194 had no effect on the ATPase activity of purified actin-myosin. In isolated unloaded mouse cardiomyocytes, RPI-194 markedly decreased the velocity and amplitude of contractions. In contrast, cardiac function was preserved in mouse isolated perfused working hearts. In summary, the novel troponin activator RPI-194 acts as a calcium sensitizer in all striated muscle types. Surprisingly, it also slows the velocity of unloaded contraction, but the cause and significance of this is uncertain at this time. RPI-194 represents a new class of non-specific troponin activator that could potentially be used either to enhance cardiac muscle contractility in the setting of systolic heart failure or to enhance skeletal muscle contraction in neuromuscular disorders.

11.
Biophys J ; 121(12): 2449-2460, 2022 06 21.
Article En | MEDLINE | ID: mdl-35591788

Cardiac myosin-binding protein C (cMyBP-C) modulates cardiac contractility through putative interactions with the myosin S2 tail and/or the thin filament. The relative contribution of these binding-partner interactions to cMyBP-C modulatory function remains unclear. Hence, we developed a "nanosurfer" assay as a model system to interrogate these cMyBP-C binding-partner interactions. Synthetic thick filaments were generated using recombinant human ß-cardiac myosin subfragments (HMM or S1) attached to DNA nanotubes, with 14- or 28-nm spacing, corresponding to the 14.3-nm myosin spacing in native thick filaments. The nanosurfer assay consists of DNA nanotubes added to the in vitro motility assay so that myosins on the motility surface effectively deliver thin filaments to the DNA nanotubes, enhancing thin filament gliding probability on the DNA nanotubes. Thin filament velocities on nanotubes with either 14- or 28-nm myosin spacing were no different. We then characterized the effects of cMyBP-C on thin filament motility by alternating HMM and cMyBP-C N-terminal fragments (C0-C2 or C1-C2) on nanotubes every 14 nm. Both C0-C2 and C1-C2 reduced thin filament velocity four- to sixfold relative to HMM alone. Similar inhibition occurred using the myosin S1 construct, which lacks the myosin S2 region proposed to interact with cMyBP-C, suggesting that the cMyBP-C N terminus must interact with other myosin head domains and/or actin to slow thin filament velocity. Thin filament velocity was unaffected by the C0-C1f fragment, which lacks the majority of the M-domain, supporting the importance of this domain for inhibitory interaction(s). A C0-C2 fragment with phospho-mimetic replacement in the M-domain showed markedly less inhibition of thin filament velocity compared with its phospho-null counterpart, highlighting the modulatory role of M-domain phosphorylation on cMyBP-C function. Therefore, the nanosurfer assay provides a platform to precisely manipulate spatially dependent cMyBP-C binding-partner interactions, shedding light on the molecular regulation of ß-cardiac myosin contractility.


Cardiac Myosins , Ventricular Myosins , Cardiac Myosins/metabolism , Carrier Proteins/metabolism , Humans , Myocardium/metabolism , Myosins/metabolism , Phosphorylation , Ventricular Myosins/analysis , Ventricular Myosins/metabolism
12.
Mol Biol Cell ; 33(1): ar5, 2022 01 01.
Article En | MEDLINE | ID: mdl-34788109

Class III myosins are actin-based motors proposed to transport cargo to the distal tips of stereocilia in the inner ear hair cells and/or to participate in stereocilia length regulation, which is especially important during development. Mutations in the MYO3A gene are associated with delayed onset deafness. A previous study demonstrated that L697W, a dominant deafness mutation, disrupts MYO3A ATPase and motor properties but does not impair its ability to localize to the tips of actin protrusions. In the current study, we characterized the transient kinetic mechanism of the L697W motor ATPase cycle. Our kinetic analysis demonstrates that the mutation slows the ADP release and ATP hydrolysis steps, which results in a slight reduction in the duty ratio and slows detachment kinetics. Fluorescence recovery after photobleaching (FRAP) of filopodia tip localized L697W and WT MYO3A in COS-7 cells revealed that the mutant does not alter turnover or average intensity at the actin protrusion tips. We demonstrate that the mutation slows filopodia extension velocity in COS-7 cells which correlates with its twofold slower in vitro actin gliding velocity. Overall, this work allowed us to propose a model for how the motor properties of MYO3A are crucial for facilitating actin protrusion length regulation.


Deafness/genetics , Myosin Heavy Chains/genetics , Myosin Heavy Chains/metabolism , Myosin Type III/genetics , Myosin Type III/metabolism , Actins/metabolism , Adenosine Triphosphatases/genetics , Animals , COS Cells , Chlorocebus aethiops , Fluorescence Recovery After Photobleaching/methods , Humans , Kinetics , Mutation , Myosins , Pseudopodia/metabolism
13.
J Biol Chem ; 296: 100640, 2021.
Article En | MEDLINE | ID: mdl-34237899

Myosins are actin-based motor proteins known to perform a variety of different mechanical tasks in cells including transporting cargo, generating tension, and linking the cytoskeleton and membrane. Myosins that function as transporters often form complexes with adaptor proteins and vesicular membranes, making it unclear how they transport their cargo through the actin cytoskeletal network. Rai et al. now use single-molecule kinetics, FRET, and DNA origami scaffolds that mimic motor-adaptor complexes to reveal that the myosin VI-Dab2 complex, which is held together weakly and turns over rapidly, can facilitate processive transport without disruption of the cytoskeleton.


Adaptor Proteins, Signal Transducing/physiology , Apoptosis Regulatory Proteins/physiology , Myosin Heavy Chains/physiology , Actin Cytoskeleton/metabolism , Biological Transport , Cytoskeletal Proteins/metabolism , Humans , Protein Binding , Subcellular Fractions/metabolism
14.
Biophys J ; 120(11): 2222-2236, 2021 06 01.
Article En | MEDLINE | ID: mdl-33864791

Cardiac muscle contraction is driven by the molecular motor myosin, which uses the energy from ATP hydrolysis to generate a power stroke when interacting with actin filaments, although it is unclear how this mechanism is impaired by mutations in myosin that can lead to heart failure. We have applied a fluorescence resonance energy transfer (FRET) strategy to investigate structural changes in the lever arm domain of human ß-cardiac myosin subfragment 1 (M2ß-S1). We exchanged the human ventricular regulatory light chain labeled at a single cysteine (V105C) with Alexa 488 onto M2ß-S1, which served as a donor for Cy3ATP bound to the active site. We monitored the FRET signal during the actin-activated product release steps using transient kinetic measurements. We propose that the fast phase measured with our FRET probes represents the macroscopic rate constant associated with actin-activated rotation of the lever arm during the power stroke in M2ß-S1. Our results demonstrated M2ß-S1 has a slower actin-activated power stroke compared with fast skeletal muscle myosin and myosin V. Measurements at different temperatures comparing the rate constants of the actin-activated power stroke and phosphate release are consistent with a model in which the power stroke occurs before phosphate release and the two steps are tightly coupled. We suggest that the actin-activated power stroke is highly reversible but followed by a highly irreversible phosphate release step in the absence of load and free phosphate. We demonstrated that hypertrophic cardiomyopathy (R723G)- and dilated cardiomyopathy (F764L)-associated mutations both reduced actin activation of the power stroke in M2ß-S1. We also demonstrate that both mutations alter in vitro actin gliding in the presence and absence of load. Thus, examining the structural kinetics of the power stroke in M2ß-S1 has revealed critical mutation-associated defects in the myosin ATPase pathway, suggesting these measurements will be extremely important for establishing structure-based mechanisms of contractile dysfunction.


Actins , Cardiomyopathies , Actins/genetics , Adenosine Triphosphate , Cardiac Myosins , Humans , Mutation , Myosin Subfragments
15.
J Gen Physiol ; 153(7)2021 07 05.
Article En | MEDLINE | ID: mdl-33891674

Mutations in the cardiac myosin regulatory light chain (RLC, MYL2 gene) are known to cause inherited cardiomyopathies with variable phenotypes. In this study, we investigated the impact of a mutation in the RLC (K104E) that is associated with hypertrophic cardiomyopathy (HCM). Previously in a mouse model of K104E, older animals were found to develop cardiac hypertrophy, fibrosis, and diastolic dysfunction, suggesting a slow development of HCM. However, variable penetrance of the mutation in human populations suggests that the impact of K104E may be subtle. Therefore, we generated human cardiac myosin subfragment-1 (M2ß-S1) and exchanged on either the wild type (WT) or K104E human ventricular RLC in order to assess the impact of the mutation on the mechanochemical properties of cardiac myosin. The maximum actin-activated ATPase activity and actin sliding velocities in the in vitro motility assay were similar in M2ß-S1 WT and K104E, as were the detachment kinetic parameters, including the rate of ATP-induced dissociation and the ADP release rate constant. We also examined the mechanical performance of α-cardiac myosin extracted from transgenic (Tg) mice expressing human wild type RLC (Tg WT) or mutant RLC (Tg K104E). We found that α-cardiac myosin from Tg K104E animals demonstrated enhanced actin sliding velocities in the motility assay compared with its Tg WT counterpart. Furthermore, the degree of incorporation of the mutant RLC into α-cardiac myosin in the transgenic animals was significantly reduced compared with wild type. Therefore, we conclude that the impact of the K104E mutation depends on either the length or the isoform of the myosin heavy chain backbone and that the mutation may disrupt RLC interactions with the myosin lever arm domain.


Cardiac Myosins , Cardiomyopathy, Hypertrophic , Actins/genetics , Actins/metabolism , Adenosine Triphosphatases , Animals , Cardiac Myosins/genetics , Cardiac Myosins/metabolism , Cardiomyopathy, Hypertrophic/genetics , Mice , Mutation , Myosin Light Chains/genetics , Myosin Light Chains/metabolism
16.
Front Cell Dev Biol ; 9: 643856, 2021.
Article En | MEDLINE | ID: mdl-33718386

Cytoskeletal motors produce force and motion using the energy from ATP hydrolysis and function in a variety of mechanical roles in cells including muscle contraction, cargo transport, and cell division. Actin-based myosin motors have been shown to play crucial roles in the development and function of the stereocilia of auditory and vestibular inner ear hair cells. Hair cells can contain hundreds of stereocilia, which rely on myosin motors to elongate, organize, and stabilize their structure. Mutations in many stereocilia-associated myosins have been shown to cause hearing loss in both humans and animal models suggesting that each myosin isoform has a specific function in these unique parallel actin bundle-based protrusions. Here we review what is known about the classes of myosins that function in the stereocilia, with a special focus on class III myosins that harbor point mutations associated with delayed onset hearing loss. Much has been learned about the role of the two class III myosin isoforms, MYO3A and MYO3B, in maintaining the precise stereocilia lengths required for normal hearing. We propose a model for how class III myosins play a key role in regulating stereocilia lengths and demonstrate how their motor and regulatory properties are particularly well suited for this function. We conclude that ongoing studies on class III myosins and other stereocilia-associated myosins are extremely important and may lead to novel therapeutic strategies for the treatment of hearing loss due to stereocilia degeneration.

17.
J Biol Chem ; 295(51): 17383-17397, 2020 12 18.
Article En | MEDLINE | ID: mdl-33453985

Myosins generate force and motion by precisely coordinating their mechanical and chemical cycles, but the nature and timing of this coordination remains controversial. We utilized a FRET approach to examine the kinetics of structural changes in the force-generating lever arm in myosin V. We directly compared the FRET results with single-molecule mechanical events examined by optical trapping. We introduced a mutation (S217A) in the conserved switch I region of the active site to examine how myosin couples structural changes in the actin- and nucleotide-binding regions with force generation. Specifically, S217A enhanced the maximum rate of lever arm priming (recovery stroke) while slowing ATP hydrolysis, demonstrating that it uncouples these two steps. We determined that the mutation dramatically slows both actin-induced rotation of the lever arm (power stroke) and phosphate release (≥10-fold), whereas our simulations suggest that the maximum rate of both steps is unchanged by the mutation. Time-resolved FRET revealed that the structure of the pre- and post-power stroke conformations and mole fractions of these conformations were not altered by the mutation. Optical trapping results demonstrated that S217A does not dramatically alter unitary displacements or slow the working stroke rate constant, consistent with the mutation disrupting an actin-induced conformational change prior to the power stroke. We propose that communication between the actin- and nucleotide-binding regions of myosin assures a proper actin-binding interface and active site have formed before producing a power stroke. Variability in this coupling is likely crucial for mediating motor-based functions such as muscle contraction and intracellular transport.


Actins/metabolism , Fluorescence Resonance Energy Transfer/methods , Myosin Type V/metabolism , Optical Imaging/methods , Phosphates/metabolism , Adenosine Triphosphatases/metabolism , Adenosine Triphosphate/metabolism , Animals , Chickens , Kinetics , Models, Molecular , Mutation , Myosin Type V/genetics
18.
J Biol Chem ; 294(46): 17314-17325, 2019 11 15.
Article En | MEDLINE | ID: mdl-31578282

We investigated a dilated cardiomyopathy (DCM) mutation (F764L) in human ß-cardiac myosin by determining its motor properties in the presence and absence of the heart failure drug omecamtive mecarbil (OM). The mutation is located in the converter domain, a key region of communication between the catalytic motor and lever arm in myosins, and is nearby but not directly in the OM-binding site. We expressed and purified human ß-cardiac myosin subfragment 1 (M2ß-S1) containing the F764L mutation, and compared it to WT with in vitro motility as well as steady-state and transient kinetics measurements. In the absence of OM we demonstrate that the F764L mutation does not significantly change maximum actin-activated ATPase activity but slows actin sliding velocity (15%) and the actomyosin ADP release rate constant (25%). The transient kinetic analysis without OM demonstrates that F764L has a similar duty ratio as WT in unloaded conditions. OM is known to enhance force generation in cardiac muscle while it inhibits the myosin power stroke and enhances actin-attachment duration. We found that OM has a reduced impact on F764L ATPase and sliding velocity compared with WT. Specifically, the EC50 for OM induced inhibition of in vitro motility was 3-fold weaker in F764L. Also, OM reduces maximum actin-activated ATPase 2-fold in F764L, compared with 4-fold with WT. Overall, our results suggest that F764L attenuates the impact of OM on actin-attachment duration and/or the power stroke. Our work highlights the importance of mutation-specific considerations when pursuing small molecule therapies for cardiomyopathies.


Cardiomyopathy, Dilated/genetics , Heart Failure/genetics , Urea/analogs & derivatives , Ventricular Myosins/genetics , Actin Cytoskeleton/drug effects , Actins/genetics , Actins/metabolism , Actomyosin/genetics , Adenosine Triphosphatases/genetics , Cardiomyopathy, Dilated/drug therapy , Cardiomyopathy, Dilated/pathology , Heart Failure/drug therapy , Heart Failure/pathology , Humans , Kinetics , Motor Activity/genetics , Mutation , Myocardial Contraction/drug effects , Protein Domains/genetics , Urea/pharmacology , Ventricular Myosins/chemistry , Ventricular Myosins/metabolism
19.
Structure ; 27(9): 1366-1374.e3, 2019 09 03.
Article En | MEDLINE | ID: mdl-31279628

Tandem repeats are basic building blocks for constructing proteins with diverse structures and functions. Compared with extensively studied α-helix-based tandem repeats such as ankyrin, tetratricopeptide, armadillo, and HEAT repeat proteins, relatively little is known about tandem repeat proteins formed by ß hairpins. In this study, we discovered that the MORN repeats from MORN4 function as a protein binding module specifically recognizing a tail cargo binding region from Myo3a. The structure of the MORN4/Myo3a complex shows that MORN4 forms an extended single-layered ß-sheet structure and uses a U-shaped groove to bind to the Myo3a tail with high affinity and specificity. Sequence and structural analyses further elucidated the unique sequence features for folding and target binding of MORN repeats. Our work establishes that the ß-hairpin-based MORN repeats are protein-protein interaction modules.


Membrane Proteins/chemistry , Membrane Proteins/metabolism , Myosin Heavy Chains/chemistry , Myosin Heavy Chains/metabolism , Tandem Repeat Sequences , Amino Acid Sequence , Animals , Binding Sites , COS Cells , Chlorocebus aethiops , Crystallography, X-Ray , Male , Membrane Proteins/genetics , Models, Molecular , Protein Binding , Protein Conformation, beta-Strand , Protein Domains , Protein Folding
...