Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 69
1.
Front Microbiol ; 15: 1385582, 2024.
Article En | MEDLINE | ID: mdl-38894968

Toxoplasmosis, while often asymptomatic and prevalent as a foodborne disease, poses a considerable mortality risk for immunocompromised individuals during pregnancy. Point-of-care serological tests that detect specific IgG and IgM in patient sera are critical for disease management under limited resources. Despite many efforts to replace the T. gondii total lysate antigens (TLAs) by recombinant antigens (rAgs) in commercial kits, while IgG detection provides significant specificity and sensitivity, IgM detection remains comparatively low in sensitivity. In this study, we attempted to identify novel antigens targeting IgM in early infection, thereby establishing an IgM on-site detection kit. Using two-dimensional gel electrophoresis (2DE) and mouse serum immunoblotting, three novel antigens, including EF1γ, PGKI, and GAP50, were indicated to target T. gondii IgM. However, rAg EF1γ was undetectable by IgM of mice sera in Western blotting verification experiments, and ELISA coated with PGKI did not eliminate cross-reactivity, in contrast to GAP50. Subsequently, the lateral flow reaction employing a strip coated with 0.3 mg/mL purified rAg GAP50 and exhibited remarkable sensitivity compared with the conventional ELISA based on tachyzoite TLA, which successfully identified IgM in mouse sera infected with tachyzoites, ranging from 103 to 104 at 5 dpi and 104 at 7 dpi, respectively. Furthermore, by using standard T. gondii-infected human sera from WHO, the limit of detection (LOD) for the rapid fluorescence immunochromatographic test (FICT) using GAP50 was observed at 0.65 IU (international unit). These findings underline the particular immunoreactivity of GAP50, suggesting its potential as a specific biomarker for increasing the sensitivity of the FICT in IgM detection.

2.
Mater Today Bio ; 26: 101055, 2024 Jun.
Article En | MEDLINE | ID: mdl-38693995

Recently, interest in cancer immunotherapy has increased over traditional anti-cancer therapies such as chemotherapy or targeted therapy. Natural killer (NK) cells are part of the immune cell family and essential to tumor immunotherapy as they detect and kill cancer cells. However, the disadvantage of NK cells is that cell culture is difficult. In this study, porous microgels have been fabricated using microfluidic channels to effectively culture NK cells. Microgel fabrication using microfluidics can be mass-produced in a short time and can be made in a uniform size. Microgels consist of photo cross-linkable polymers such as methacrylic gelatin (GelMa) and can be regulated via controlled GelMa concentrations. NK92 cell-laden three-dimensional (3D) microgels increase mRNA expression levels, NK92 cell proliferation, cytokine release, and anti-tumor efficacy, compared with two-dimensional (2D) cultures. In addition, the study confirms that 3D-cultured NK92 cells enhance anti-tumor effects compared with enhancement by 2D-cultured NK92 cells in the K562 leukemia mouse model. Microgels containing healthy NK cells are designed to completely degrade after 5 days allowing NK cells to be released to achieve cell-to-cell interaction with cancer cells. Overall, this microgel system provides a new cell culture platform for the effective culturing of NK cells and a new strategy for developing immune cell therapy.

3.
Parasites Hosts Dis ; 62(1): 42-52, 2024 Feb.
Article En | MEDLINE | ID: mdl-38443769

Antimalarial drugs are an urgently need and crucial tool in the campaign against malaria, which can threaten public health. In this study, we examined the cytotoxicity of the 9 antimalarial compounds chemically synthesized using SKM13-2HCl. Except for SKM13-2HCl, the 5 newly synthesized compounds had a 50% cytotoxic concentration (CC50) > 100 µM, indicating that they would be less cytotoxic than SKM13-2HCl. Among the 5 compounds, only SAM13-2HCl outperformed SKM13-2HCl for antimalarial activity, showing a 3- and 1.3-fold greater selective index (SI) (CC50/IC50) than SKM13-2HCl in vitro against both chloroquine-sensitive (3D7) and chloroquine -resistant (K1) Plasmodium falciparum strains, respectively. Thus, the presence of morpholine amide may help to effectively suppress human-infectious P. falciparum parasites. However, the antimalarial activity of SAM13-2HCl was inferior to that of the SKM13-2HCl template compound in the P. berghei NK65-infected mouse model, possibly because SAM13-2HCl had a lower polarity and less efficient pharmacokinetics than SKM13-2HCl. SAM13-2HCl was more toxic in the rodent model. Consequently, SAM13-2HCl containing morpholine was selected from screening a combination of pharmacologically significant structures as being the most effective in vitro against human-infectious P. falciparum but was less efficient in vivo in a P. berghei-infected animal model when compared with SKM13-2HCl. Therefore, SAM13-2HCl containing morpholine could be considered a promising compound to treat chloroquine-resistant P. falciparum infections, although further optimization is crucial to maintain antimalarial activity while reducing toxicity in animals.


Antimalarials , Folic Acid Antagonists , Mice , Animals , Humans , Antimalarials/pharmacology , Mice, Inbred ICR , Plasmodium berghei , Plasmodium falciparum , Chloroquine/pharmacology , Morpholines , Amides/pharmacology , Disease Models, Animal
4.
Int J Biol Macromol ; 262(Pt 2): 130194, 2024 Mar.
Article En | MEDLINE | ID: mdl-38360222

Gelatin methacrylate (GelMA) bioink has been widely used in bioprinting because it is a printable and biocompatible biomaterial. However, it is difficult to print GelMA bioink without any temperature control because it has a thermally-sensitive rheological property. Therefore, in this study, we developed a temperature-controlled printing system in real time without affecting the viability of the cells encapsulated in the bioink. In addition, a skin-derived decellularized extracellular matrix (SdECM) was printed with GelMA to better mimic the native tissue environment compared with solely using GelMA bioink with the enhancement of structural stability. The temperature setting accuracy was calculated to be 98.58 ± 1.8 % for the module and 99.48 ± 1.33 % for the plate from 5 °C to 37 °C. The group of the temperature of the module at 10 °C and the plate at 20 °C have 93.84 % cell viability with the printable range in the printability window. In particular, the cell viability and proliferation were increased in the encapsulated fibroblasts in the GelMA/SdECM bioink, relative to the GelMA bioink, with a morphology that significantly spread for seven days. The gene expression and growth factors related to skin tissue regeneration were relatively upregulated with SdECM components. In the bioprinting process, the rheological properties of the GelMA/SdECM bioink were successfully adjusted in real time to increase printability, and the native skin tissue mimicked components providing tissue-specific biofunctions to the encapsulated cells. The developed bioprinting strategies and bioinks could support future studies related to the skin tissue reconstruction, regeneration, and other medical applications using the bioprinting process.


Gelatin , Tissue Scaffolds , Tissue Scaffolds/chemistry , Gelatin/chemistry , Methacrylates/chemistry , Printing, Three-Dimensional , Biocompatible Materials , Tissue Engineering
5.
Malar J ; 22(1): 381, 2023 Dec 16.
Article En | MEDLINE | ID: mdl-38104158

BACKGROUND: Malaria is still endemic in South Korea. However, limited information is available on the current Anopheles breeding sites and the occurrence of insecticide resistance-associated genetic mutations and their distribution needed to control the malaria vector efficiently. METHODS: This study explored breeding sites of Anopheline adults in Gimpo-si, near the demilitarized zone (DMZ) in Gyeonggi-do province, South Korea, from 2022 to 2023. Genetic diversity was investigated based on the internal transcribed spacer (ITS2), cytochrome c oxidase subunit I (COI), and knockdown resistance (kdr) genes of Anopheles mosquitoes. A natural environment associated with the seasonal abundance of Anopheles larvae was characterized. RESULTS: Two breeding sites of Anopheles larvae and adults were found at a stream margin or shallow freshwater near the forest in Wolgot-myeon in Gimpo-si without cattle shed within 1 km and in Naega-myeon in Ganghwa-gun with cow shed within 100 m in 2022 and 2023, respectively. Both sites were located between the newly cultivated lands and the forest. Besides, both breeding sites were in the valley at a slight elevation of 60-70 m from ground lands and maintained the shadow all day. Overall, the Wolgot-myeon breeding site showed various Anopheles spp. larvae, including Anopheles sinensis. Naega-myeon, an additional breeding site found in 2023, had Anopheles sineroides larvae, and approximately 59.7% (89/149) of An. sinensis adults inhabited within a 100-m distance. The total collection, including larvae and adults, revealed that An. sinensis, Anopheles pullus, Anopheles kleini, An. sineroides, Anopheles belenrae, and Anopheles lindesayi accounted for 44.2% (118/267), 0.7% (2/267), 0.7% (2/267), 22.1% (59/267), 1.9% (5/267), and 30.3% (81/267), respectively. Furthermore, various kdr mutant genotypes (F/F, C/C, L/F, L/C and F/C) in An. sinensis, and the first kdr allele mutant (L/F1014) in An. belenrae were identified in South Korea. CONCLUSIONS: Two breeding sites of Anopheles larvae were studied in Wolgot-myeon and Naega-myeon. Various Anopheles spp. larvae were detected in both habitats, but overall, An. sinensis was the most prevalent adults in both study sites. The occurrence of kdr allele mutant of An. belenrae in South Korea was reported. Rigorous larvae monitoring of Anopheles spp., continuously updating information on Anopheles breeding sites, and understanding the environmental conditions of Anopheles habitats are required to develop an effective malaria control programme in South Korea.


Anopheles , Malaria , Female , Animals , Cattle , Anopheles/genetics , Mosquito Vectors/genetics , Republic of Korea/epidemiology , Ecosystem , Forests , Larva/genetics , Mutation
6.
Sci Total Environ ; 905: 166956, 2023 Dec 20.
Article En | MEDLINE | ID: mdl-37717776

Over the last few decades, pollution levels in aquatic environments due to heavy metal ions and micro/nanoplastics have increased owing to industrial development, causing adverse effects on microorganisms. Adsorbent-based filtration is a well-developed technique for removing contaminants from aquatic environments. However, this technique should be improved from the perspectives of eco-friendliness and cost-effectiveness, as commercial adsorbents require energy-intensive synthesis and post-processing with chelating agents. In this study, an eco-friendly filtration system was developed. This system employs biodegradable, natural materials, such as diatomite to remove metal ions and micro/nanoplastics and polycaprolactone (PCL) to make the free-form shapes. The filter removes metal ions via adsorption and micro/nanoplastics via physical size filtration and adsorption. This PCL-bound diatomite filter was fabricated from a mixture of acetone, PCL, and diatomite, varying its size, thickness, shape, and stacking number for a particular objective and usage. The adsorption capacity, kinetics, and permeation flux of the membrane were measured, and the stacking number of the membranes were optimized to maximize the removal efficiency of the target contaminants. This filter is completely biodegradable, as indicated by the degradation of the PCL binder within 60 days in water, without any treatment. The degradable, eco-friendly PCL-bound diatomite filter is a low-cost and sustainable component that can be utilized in various applications, especially potable drinking water production from river in developing country and filtering the micro/nanoplastics from the commercially bottled drinking water in daily life.

7.
Mater Today Bio ; 21: 100685, 2023 Aug.
Article En | MEDLINE | ID: mdl-37545560

Extrusion-based bioprinting technology is widely used for tissue regeneration and reconstruction. However, the method that uses only hydrogel as the bioink base material exhibits limited biofunctional properties and needs improvement to achieve the desired tissue regeneration. In this study, we present a three-dimensionally printed bioactive microparticle-loaded scaffold for use in bone regeneration applications. The unique structure of the microparticles provided sustained release of growth factor for > 4 weeks without the use of toxic or harmful substances. Before and after printing, the optimal particle ratio in the bioink for cell viability demonstrated a survival rate of ≥ 85% over 7 days. Notably, osteogenic differentiation and mineralization-mediated by human periosteum-derived cells in scaffolds with bioactive microparticles-increased over a 2-week interval. Here, we present an alternative bioprinting strategy that uses the sustained release of bioactive microparticles to improve biofunctional properties in a manner that is acceptable for clinical bone regeneration applications.

8.
Biomater Res ; 27(1): 60, 2023 Jun 22.
Article En | MEDLINE | ID: mdl-37349810

BACKGROUND: Patients face a serious threat if a solid tumor leaves behind partial residuals or cannot be completely removed after surgical resection. Immunotherapy has attracted attention as a method to prevent this condition. However, the conventional immunotherapy method targeting solid tumors, that is, intravenous injection, has limitations in homing in on the tumor and in vivo expansion and has not shown effective clinical results. METHOD: To overcome these limitations, NK cells (Natural killer cells) were encapsulated in micro/macropore-forming hydrogels using 3D bioprinting to target solid tumors. Sodium alginate and gelatin were used to prepare micro-macroporous hydrogels. The gelatin contained in the alginate hydrogel was removed because of the thermal sensitivity of the gelatin, which can generate interconnected micropores where the gelatin was released. Therefore, macropores can be formed through bioprinting and micropores can be formed using thermally sensitive gelatin to make macroporous hydrogels. RESULTS: It was confirmed that intentionally formed micropores could help NK cells to aggregate easily, which enhances cell viability, lysis activity, and cytokine release. Macropores can be formed using 3D bioprinting, which enables NK cells to receive the essential elements. We also characterized the functionality of NK 92 and zEGFR-CAR-NK cells in the pore-forming hydrogel. The antitumor effects on leukemia and solid tumors were investigated using an in vitro model. CONCLUSION: We demonstrated that the hydrogel encapsulating NK cells created an appropriate micro-macro environment for clinical applications of NK cell therapy for both leukemia and solid tumors via 3D bioprinting. 3D bioprinting makes macro-scale clinical applications possible, and the automatic process shows potential for development as an off-the-shelf immunotherapy product. This immunotherapy system could provide a clinical option for preventing tumor relapse and metastasis after tumor resection. Micro/macropore-forming hydrogel with NK cells fabricated by 3D bioprinting and implanted into the tumor site.

9.
Int J Parasitol Drugs Drug Resist ; 20: 113-120, 2022 Dec.
Article En | MEDLINE | ID: mdl-36375338

Malaria is among the most devastating and widespread tropical parasitic diseases in developing countries. To prevent a potential public health emergency, there is an urgent need for new antimalarial drugs, with single-dose cures, broad therapeutic potential, and novel mechanism of action. We synthesized HCl salt of SKM13 (SKM13-2HCl) based on the modification of SKM13 to improve solubility in water. The anti-malarial activity of the synthesized drug was evaluated in both in vitro and in vivo models. The selective index indicated that SKM13-2HCl showed the same effectiveness with SKM13 in Plasmodium falciparum in in-vitro. Even though, in vivo mouse study demonstrated that SKM13 (20 mg/kg) at single dose could not completely inhibit P. berghei growth in blood. The survival rate increased from 33 to 90% at 15 days after infection. However, SKM13-2HCl (20 mg/kg) at a single dose increased the survival rate up to 100% at the same duration. Ultra-High-Performance Liquid Chromatography (UHPLC) showed that solubility in water of SKM13 and SKM13-2HCL was 0.389 mg/mL and 417 mg/mL, respectively. Pharmacokinetics (PK) analysis corresponded to the increased solubility of SKM13-2HCl over SKM13. Haematological parameters [red blood cell (RBC) count, haemoglobin level, and haematocrit level] supported the comparable efficacy of SKM13 and SKM13-2HCl in a 4-day suppression test. One mode of these drugs was found to be activating phosphorylation of eIF2α, hallmark of ER-stress, to kill parasite. Novel salt derivative of SKM13 (SKM13-2HCl) have enhanced anti-malarial activity against P. falciparum with endoplasmic reticulum (ER)-stress and salt form of SKM13 is an excellent direction to develop anti-malarial drug candidate in mice model.


Antimalarials , Malaria, Falciparum , Malaria , Mice , Animals , Antimalarials/therapeutic use , Plasmodium berghei , Plasmodium falciparum , Malaria/drug therapy , Malaria/parasitology , Malaria, Falciparum/drug therapy , Water
10.
Nanoscale ; 14(35): 12581-12588, 2022 Sep 15.
Article En | MEDLINE | ID: mdl-36039694

The ability to control the shape of hollow particles (e.g., capsules or bubbles) holds great promise for enhancing the encapsulation efficiency and mechanical/optical properties. However, conventional preparation methods suffer from a low yield, difficulty in controlling the shape, and a tedious production process, limiting their widespread application. Here, we present a method for fabricating polyhedral graphene oxide (GO)-shelled microbubbles with sharp edges and vertices, which is based on the microfluidic generation of spherical compound bubbles followed by shell deformation. Sphere-to-polytope deformation is a result of the shell instability due to gradual outward gas transport, which is dictated by Laplace pressure across the shell. The shape-variant behaviours of the bubbles can also be attributed to the compositional heterogeneity of the shells. In particular, the high degree of control of microfluidic systems enables the formation of non-spherical bubbles with various shapes; the structural motifs of the bubbles are easily controlled by varying the size and thickness of the mid-shell in compound bubbles, ranging from tetrahedra to octahedra. The strategy presented in this study provides a new route for fabricating 3D structured solid bubbles, which is particularly advantageous for the development of high-performance mechanical or thermal material applications.

11.
Int J Mol Sci ; 23(14)2022 Jul 19.
Article En | MEDLINE | ID: mdl-35887315

Globally, point-of-care testing (POCT) is the most preferable on-site technique for disease detection and includes a rapid diagnostic test (RDT) and fluorescent immunochromatographic strip test (FICT). The testing kits are generally insufficient in terms of signal enhancement, which is a major drawback of this approach. Sensitive and timely on-site POCT methods with high signal enhancement are therefore essential for the accurate diagnosis of infectious diseases. Herein, we prepare cysteamine-gold coated carboxylated europium chelated nanoparticle (Cys Au-EuNPs)-mediated POCT for the detection of the H5N1 avian influenza virus (AIV). Commercial nanoparticles were used for comparison. The spectral characteristics, surface morphologies, functional groups, surface charge and stability of the Cys AuNPs, EuNPs, and Cys Au-EuNPs were confirmed by UV-visible spectrophotometry, fluorescence spectrometry, transmission electron microscope with Selected area electron diffraction (TEM-SAED), Fourier-transform infrared spectroscopy (FTIR) and zeta potential analysis. The particle size distribution revealed an average size of ~130 ± 0.66 nm for the Cys Au-EuNPs. The Cys Au-EuNP-mediated RDT (colorimetric analysis) and FICT kit revealed a limit of detection (LOD) of 10 HAU/mL and 2.5 HAU/mL, respectively, for H5N1 under different titer conditions. The obtained LOD is eight-fold that of commercial nanoparticle conjugates. The photo luminance (PL) stability of ~3% the Cys Au-EuNPs conjugates that was obtained under UV light irradiation differs considerably from that of the commercial nanoparticle conjugates. Overall, the developed Cys Au-EuNPs-mediated dual-mode POCT kit can be used as an effective nanocomposite for the development of on-site monitoring systems for infectious disease surveillance.


Influenza A Virus, H5N1 Subtype , Metal Nanoparticles , Animals , Cysteamine , Gold/chemistry , Metal Nanoparticles/chemistry , Point-of-Care Systems
12.
Int J Mol Sci ; 23(11)2022 Jun 04.
Article En | MEDLINE | ID: mdl-35682982

Rapid diagnosis is essential for the control and prevention of H5 highly pathogenic avian influenza viruses (HPAIVs). However, highly sensitive and rapid diagnostic systems have shown limited performance due to specific antibody scarcity. In this study, two novel specific monoclonal antibodies (mAbs) for clade 2.3.4.4 H5Nx viruses were developed by using an immunogen from a reversed genetic influenza virus (RGV). These mAbs were combined with fluorescence europium nanoparticles and an optimized lysis buffer, which were further used for developing a fluorescent immunochromatographic rapid strip test (FICT) for early detection of H5Nx influenza viruses on chicken stool samples. The result indicates that the limit of detection (LoD) of the developed FICT was 40 HAU/mL for detection of HPAIV H5 clade 2.3.4.4b in spiked chicken stool samples, which corresponded to 4.78 × 104 RNA copies as obtained from real-time polymerase chain reaction (RT-PCR). An experimental challenge of chicken with H5N6 HPAIV is lethal for chicken three days post-infection (DPI). Interestingly, our FICT could detect H5N6 in stool samples at 2 DPI earlier, with 100% relative sensitivity in comparison with RT-PCR, and it showed 50% higher sensitivity than the traditional colloidal gold-based rapid diagnostic test using the same mAbs pair. In conclusion, our rapid diagnostic method can be utilized for the early detection of H5Nx 2.3.4.4 HPAIVs in avian fecal samples from poultry farms or for influenza surveillance in wild migratory birds.


Influenza A virus , Influenza in Birds , Metal Nanoparticles , Animals , Animals, Wild , Chickens , Europium , Influenza A virus/genetics , Influenza in Birds/epidemiology , Phylogeny
13.
Viruses ; 14(5)2022 05 08.
Article En | MEDLINE | ID: mdl-35632743

The subtype H6N6 has been identified worldwide following the increasing frequency of avian influenza viruses (AIVs). These AIVs also have the ability to bind to human-like receptors, thereby increasing the risk of animal-human transmission. In September 2019, an H6N6 avian influenza virus-KNU2019-48 (A/Mallard (Anas platyrhynchos)/South Korea/KNU 2019-48/2019(H6N6))-was isolated from Anas platyrhynchos in South Korea. Phylogenetic analysis results revealed that the hemagglutinin (HA) gene of this strain belongs to the Korean lineage, whereas the neuraminidase (NA) and polymerase basic protein 1 (PB1) genes belong to the Chinese lineage. Outstanding internal proteins such as PB2, polymerase acidic protein, nucleoprotein, matrix protein, and non-structural protein belong to the Vietnamese lineage. Additionally, a monobasic amino acid (PRIETR↓GLF) at the HA cleavage site; non-deletion of the stalk region (residue 59-69) in the NA gene; and E627 in the PB2 gene indicate that the KNU2019-48 isolate is a typical low-pathogenic avian influenza (LPAI) virus. The nucleotide sequence similarity analysis of HA revealed that the highest homology (97.18%) of this isolate is to that of A/duck/Jiangxi/01.14 NCJD125-P/2015(H6N6), and the amino acid sequence of NA (97.38%) is closely related to that of A/duck/Fujian/10.11_FZHX1045-C/2016 (H6N6). An in vitro analysis of the KNU2019-48 virus shows a virus titer of not more than 2.8 Log10 TCID 50/mL until 72 h post-infection, whereas in the lungs, the virus is detected at 3 dpi (days post-infection). The isolated KNU2019-48 (H6N6) strain is the first reported AIV in Korea, and the H6 subtype virus has co-circulated in China, Vietnam, and Korea for half a decade. Overall, our study demonstrates that Korean H6N6 strain PB1-S375N, PA-A404S, and S409N mutations are infectious in humans and might contribute to the enhanced pathogenicity of this strain. Therefore, we emphasize the importance of continuous and intensive surveillance of the H6N6 virus not only in Korea but also worldwide.


Influenza A virus , Influenza in Birds , Animals , Ducks , Neuraminidase/genetics , Phylogeny , Republic of Korea
14.
Emerg Microbes Infect ; 11(1): 1425-1434, 2022 Dec.
Article En | MEDLINE | ID: mdl-35451353

Several novel highly pathogenic avian influenza (HPAIVs) A(H5N6) viruses were reported in Mongolia in 2020, some of which included host-specific markers associated with mammalian infection. However, their pathogenicity has not yet been investigated. Here, we isolated and evaluate two novel genotypes of A(H5N6) subtype in Mongolia during 2018-2019 (A/wildDuck/MN/H5N6/2018-19). Their evolution pattern and molecular characteristics were evaluated using gene sequencing and their pathogenicity was determined using a mouse model. We also compared their antigenicity with previous H5 Clade 2.3.4.4 human isolates by cross-hemagglutination inhibition (HI). Our data suggests that A/wildDuck/MN/H5N6/2018-19 belongs to clade 2.3.4.4h, and maintains several residues associated with mammal adaptation. In addition, our evaluations revealed that their isolates are less virulent in mice than the previously identified H5 human isolates. However, their antigenicity is distinct from other HPAIVs H5 clade 2.3.4.4, thus supporting their continued evaluation as potential infection risks and the preparation of novel candidate vaccines for their neutralization.


Influenza A virus , Influenza in Birds , Animals , Chickens , Ducks , Feces , Influenza A virus/genetics , Mammals , Phylogeny , Virulence
15.
Biomedicines ; 10(2)2022 Feb 14.
Article En | MEDLINE | ID: mdl-35203648

Hypoparathyroidism is an endocrine disorder that occurs because of the inability to produce parathyroid hormone (PTH) effectively. Previously, we reported the efficacy of tonsil-derived mesenchymal stem cells (TMSCs) differentiated into parathyroid-like cells for the treatment of hypoparathyroidism. Here, we investigated the feasibility of three-dimensional structural microbeads fabricated with TMSCs and alginate, a natural biodegradable polymer, to treat hypoparathyroidism. Alginate microbeads were fabricated by dropping a 2% (w/v) alginate solution containing TMSCs into a 5% CaCl2 solution and then differentiated into parathyroid-like cells using activin A and sonic hedgehog for 7 days. The protein expression of PTH, a specific marker of the parathyroid gland, was significantly higher in differentiated alginate microbeads with TMSCs (Al-dT) compared with in undifferentiated alginate microbeads with TMSCs. For in vivo experiments, we created the hypoparathyroidism animal model by parathyroidectomy (PTX) and implanted alginate microbeads in the dorsal interscapular region. The PTX rats with Al-dT (PTX+Al-dT) showed the highest survival rate and weight change and a gradual increase in serum intact PTH levels. We also detected a higher expression of PTH in retrieved tissues of PTX+Al-dT using immunofluorescence analysis. This study demonstrates that alginate microbeads are potential a new tool as a surgically scalable therapy for treating hypoparathyroidism.

16.
Int J Biol Macromol ; 205: 520-529, 2022 Apr 30.
Article En | MEDLINE | ID: mdl-35217077

Bioprinting is an emerging technology for manufacturing cell-laden three-dimensional (3D) scaffolds, which are used to fabricate complex 3D constructs and provide specific microenvironments for supporting cell growth and differentiation. The development of bioinks with appropriate printability and specific bioactivities is crucial for bioprinting and tissue engineering applications, including bone tissue regeneration. Therefore, to produce functional bioinks for osteoblast printing and bone tissue formation, we formulated various nanocomposite hydrogel-based bioinks using natural and biocompatible biomaterials (i.e., alginate, tempo-oxidized cellulose nanofibrils (TOCNF), and polydopamine nanoparticles (PDANPs)). Rheological studies and printability tests revealed that bioinks containing 1.5% alginate and 1.5% TOCNF in the presence or absence of PDANP (0.5%) are suitable for 3D printing. Furthermore, in vitro studies of 3D-printed osteoblast-laden scaffolds indicated that the 0.5% PDANP-incorporated bioink induced significant osteogenesis. Overall, the bioink consisting of alginate, TOCNF, and PDANPs exhibited excellent printability and bioactivity (i.e., osteogenesis).


Bioprinting , Nanoparticles , Alginates , Bioprinting/methods , Bone and Bones , Cellulose , Indoles , Osteogenesis , Polymers , Printing, Three-Dimensional , Tissue Engineering , Tissue Scaffolds
17.
Intervirology ; 65(1): 1-16, 2022.
Article En | MEDLINE | ID: mdl-34438407

INTRODUCTION: The avian influenza (AI) virus causes a highly contagious disease which is common in wild and domestic birds and sporadic in humans. Mutations and genetic reassortments among the 8 negative-sense RNA segments of the viral genome alter its pathogenic potential, demanding well-targeted, active surveillance for infection control. METHODS: Wild duck fecal samples were collected during the 2018 bird health annual surveillance in South Korea for tracking variations of the AI virus. One low-pathogenic avian influenza H5N3 reassortment virus (A/mallard duck/South Korea/KNU18-91/2018 [H5N3]) was isolated and genomically characterized by phylogenetic and molecular analyses in this study. RESULTS: It was devoid of polybasic amino acids at the hemagglutinin (HA) cleavage site and exhibited a stalk region without deletion in the neuraminidase (NA) gene and NA inhibitor resistance-linked E/D627K/N and D701N marker mutations in the PB2 gene, suggesting its low-pathogenic AI. It showed a potential of a reassortment where only HA originated from the H5N3 poultry virus of China and other genes were derived from Mongolia. In phylogenetic analysis, HA was different from that of the isolate of H5N3 in Korea, 2015. In addition, this novel virus showed adaptation in Madin-Darby canine kidney cells, with 8.05 ± 0.14 log10 50% tissue culture infectious dose (TCID50) /mL at 36 h postinfection. However, it could not replicate in mice well, showing positive growth at 3 days postinfection (dpi) (2.1 ± 0.13 log10 TCID50/mL) but not at 6 dpi. CONCLUSIONS: The HA antigenic relationship of A/mallard duck/South Korea/KNU18-91/2018 (H5N3) showed differences toward one of the old low-pathogenic H5N3 viruses in Korea. These results indicated that a novel reassortment low-pathogenic avian influenza H5N3 subtype virus emerged in South Korea in 2018 via novel multiple reassortments with Eurasian viruses, rather than one of old Korean H5N3 strains.


Influenza A virus , Influenza in Birds , Animals , Animals, Wild , Dogs , Ducks , Influenza A virus/genetics , Mice , Phylogeny
18.
Biosens Bioelectron ; 197: 113768, 2022 Feb 01.
Article En | MEDLINE | ID: mdl-34763153

A rapid diagnostic system employing an antigen detection biosensing method is needed to discriminate between Zika virus (ZIKV) and Dengue virus (DENV) due to their close antigenic homology. We developed a novel peptide pair-based flow immunochromatographic test strip (FICT) assay to detect ZIKV. Peptide aptamers, P6.1 (KQERNNWPLTWT), P29.1 (KYTTSTLKSGV), and B2.33 (KRHVWVSLSYSCAEA) were designed by paratopes and modified against the ZIKV envelope protein based on the binding affinity. An antibody-free lateral FICT was developed using a pair of peptide aptamers. In the rapid diagnostic strip, the limit of detection (LOD) for the B2.33-P6.1 peptide pair for ZIKV was 2 × 104 tissue culture infective dose TCID50/mL. Significantly, FICT could discriminate ZIKV from DENV. The stability and performance of FICT were confirmed using human sera and urine, showing a comparable LOD value. Our study demonstrated that in silico modeling could be used to develop a novel peptide pair-based FICT assay for detecting ZIKV by a rapid diagnostic test.


Aptamers, Peptide , Biosensing Techniques , Dengue , Zika Virus Infection , Zika Virus , Antibodies, Viral , Cross Reactions , Humans , Peptides , Zika Virus Infection/diagnosis
19.
Korean J Parasitol ; 60(6): 401-407, 2022 Dec.
Article En | MEDLINE | ID: mdl-36588416

Antimalarial drugs play an important role in the control and treatment of malaria, a deadly disease caused by the protozoan parasite Plasmodium spp. The development of novel antimalarial agents effective against drug-resistant malarial parasites is urgently needed. The novel derivatives, SKM13-MeO and SKM13-F, were designed based on an SKM13 template by replacing the phenyl group with electron-donating (-OMe) or electron-withdrawing groups (-F), respectively, to reverse the electron density. A colorimetric assay was used to quantify cytotoxicity, and in vitro inhibition assays were performed on 3 different blood stages (ring, trophozoite, and schizonts) of P. falciparum 3D7 and the ring/mixed stage of D6 strain after synchronization. The in vitro cytotoxicity analysis showed that 2 new SKM13 derivatives reduced the cytotoxicity of the SKM13 template. SKM13 maintained the IC50 at the ring and trophozoite stages but not at the schizont stage. The IC50 values for both the trophozoite stage of P. falciparum 3D7 and ring/mixed stages of D6 demonstrated that 2 SKM13 derivatives had decreased antimalarial efficacy, particularly for the SKM13-F derivative. SKM13 may be comparably effective in ring and trophozoite, and electron-donating groups (-OMe) may be better maintain the antimalarial activity than electron-withdrawing groups (-F) in SKM13 modification.


Antimalarials , Malaria, Falciparum , Malaria , Animals , Antimalarials/pharmacology , Antimalarials/therapeutic use , Plasmodium falciparum , Malaria, Falciparum/drug therapy , Trophozoites
20.
Viruses ; 13(11)2021 10 30.
Article En | MEDLINE | ID: mdl-34834997

The outbreaks of H5N2 avian influenza viruses have occasionally caused the death of thousands of birds in poultry farms. Surveillance during the 2018 winter season in South Korea revealed three H5N2 isolates in feces samples collected from wild birds (KNU18-28: A/Wild duck/South Korea/KNU18-28/2018, KNU18-86: A/Bean Goose/South Korea/KNU18-86/2018, and KNU18-93: A/Wild duck/South Korea/KNU18-93/2018). Phylogenetic tree analysis revealed that these viruses arose from reassortment events among various virus subtypes circulating in South Korea and other countries in the East Asia-Australasian Flyway. The NS gene of the KNU18-28 and KNU18-86 isolates was closely related to that of China's H10N3 strain, whereas the KNU18-93 strain originated from the H12N2 strain in Japan, showing two different reassortment events and different from a low pathogenic H5N3 (KNU18-91) virus which was isolated at the same day and same place with KNU18-86 and KNU18-93. These H5N2 isolates were characterized as low pathogenic avian influenza viruses. However, many amino acid changes in eight gene segments were identified to enhance polymerase activity and increase adaptation and virulence in mice and mammals. Experiments reveal that viral replication in MDCK cells was quite high after 12 hpi, showing the ability to replicate in mouse lungs. The hematoxylin and eosin-stained (H&E) lung sections indicated different degrees of pathogenicity of the three H5N2 isolates in mice compared with that of the control H1N1 strain. The continuing circulation of these H5N2 viruses may represent a potential threat to mammals and humans. Our findings highlight the need for intensive surveillance of avian influenza virus circulation in South Korea to prevent the risks posed by these reassortment viruses to animal and public health.


Influenza A Virus, H5N2 Subtype/classification , Influenza A Virus, H5N2 Subtype/genetics , Reassortant Viruses/classification , Reassortant Viruses/genetics , Animals , Animals, Wild/virology , Birds/virology , Disease Models, Animal , Dogs , Ducks/virology , Feces/virology , Geese/virology , Influenza A Virus, H5N2 Subtype/isolation & purification , Influenza A Virus, H5N2 Subtype/pathogenicity , Influenza A virus/genetics , Influenza in Birds/epidemiology , Influenza in Birds/virology , Japan , Madin Darby Canine Kidney Cells , Mammals , Mice , Molecular Epidemiology , Phylogeny , Poultry/virology , Reassortant Viruses/isolation & purification , Reassortant Viruses/pathogenicity , Republic of Korea/epidemiology , Virulence , Virus Replication
...