Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 5 de 5
1.
Mol Cells ; 45(11): 806-819, 2022 Nov 30.
Article En | MEDLINE | ID: mdl-36380732

Synaptic accumulation of α-synuclein (α-Syn) oligomers and their interactions with VAMP2 have been reported to be the basis of synaptic dysfunction in Parkinson's disease (PD). α-Syn mutants associated with familial PD have also been known to be capable of interacting with VAMP2, but the exact mechanisms resulting from those interactions to eventual synaptic dysfunction are still unclear. Here, we investigate the effect of α-Syn mutant oligomers comprising A30P, E46K, and A53T on VAMP2-embedded vesicles. Specifically, A30P and A53T oligomers cluster vesicles in the presence of VAMP2, which is a shared mechanism with wild type α-Syn oligomers induced by dopamine. On the other hand, E46K oligomers reduce the membrane mobility of the planar bilayers, as revealed by single-particle tracking, and permeabilize the membranes in the presence of VAMP2. In the absence of VAMP2 interactions, E46K oligomers enlarge vesicles by fusing with one another. Our results clearly demonstrate that α-Syn mutant oligomers have aberrant effects on VAMP2-embedded vesicles and the disruption types are distinct depending on the mutant types. This work may provide one of the possible clues to explain the α-Syn mutant-type dependent pathological heterogeneity of familial PD.


Parkinson Disease , alpha-Synuclein , Humans , alpha-Synuclein/genetics , Biological Transport , Dopamine , Mutation , Parkinson Disease/genetics , Vesicle-Associated Membrane Protein 2/genetics
2.
Chem Sci ; 13(25): 7516-7525, 2022 Jun 29.
Article En | MEDLINE | ID: mdl-35872822

Cytosine methylation plays an essential role in many biological processes, such as nucleosome inactivation and regulation of gene expression. The modulation of DNA mechanics may be one of the regulatory mechanisms influenced by cytosine methylation. However, it remains unclear how methylation influences DNA mechanics. Here, we show that methylation has contrasting effects on the bending property of dsDNA depending on DNA curvature. We directly applied bending force on 30 base pairs of dsDNA using a D-shaped DNA nanostructure and measured the degree of bending using single-molecule fluorescence resonance energy transfer without surface immobilization. When dsDNA is weakly bent, methylation increases the stiffness of dsDNA. The stiffness of dsDNA increased by approximately 8% with a single methylation site for 30 bp dsDNA. When dsDNA is highly bent by a strong force, it forms a kink, i.e., a sharp bending of dsDNA. Under strong bending, methylation destabilizes the non-kink form compared with the kink form, which makes dsDNA near the kink region apparently more bendable. However, if the kink region is methylated, the kink form is destabilized, and dsDNA becomes stiffer. As a result, methylation increases the stiffness of weakly bent dsDNA and concurrently can promote kink formation, which may stabilize the nucleosome structure. Our results provide new insight into the effect of methylation, showing that cytosine methylation has opposite effects on DNA mechanics depending on its curvature and methylation location.

3.
J Am Chem Soc ; 144(29): 13137-13145, 2022 07 27.
Article En | MEDLINE | ID: mdl-35839423

Z-DNA, a noncanonical helical structure of double-stranded DNA (dsDNA), plays pivotal roles in various biological processes, including transcription regulation. Mechanical stresses on dsDNA, such as twisting and stretching, help to form Z-DNA. However, the effect of DNA bending, one of the most common dsDNA deformations, on Z-DNA formation is utterly unknown. Here, we show that DNA bending induces the formation of Z-DNA, that is, more Z-DNA is formed as the bending force becomes stronger. We regulated the bending force on dsDNA by using D-shaped DNA nanostructures. The B-Z transition was observed by single-molecule fluorescence resonance energy transfer. We found that as the bending force became stronger, Z-DNA was formed at lower Mg2+ concentrations. When dsDNA contained cytosine methylations, the B-Z transition occurred at 78 mM Mg2+ (midpoint) in the absence of the bending force. However, the B-Z transition occurred at a 28-fold lower Mg2+ concentration (2.8 mM) in the presence of the bending force. Monte Carlo simulation suggested that the B-Z transition stabilizes the bent form via the formation of the B-Z junction with base extrusion, which effectively releases the bending stress on DNA. Our results clearly show that the bending force facilitates the B-Z transition under physiological salt conditions.


DNA, Z-Form , DNA/chemistry , DNA Replication , Mechanical Phenomena , Nucleic Acid Conformation
4.
Mol Cells ; 45(1): 33-40, 2022 Jan 31.
Article En | MEDLINE | ID: mdl-34470919

The various DNA-protein interactions associated with the expression of genetic information involve double-stranded DNA (dsDNA) bending. Due to the importance of the formation of the dsDNA bending structure, dsDNA bending properties have long been investigated in the biophysics field. Conventionally, DNA bendability is characterized by innate averaging data from bulk experiments. The advent of single-molecule methods, such as atomic force microscopy, optical and magnetic tweezers, tethered particle motion, and single-molecule fluorescence resonance energy transfer measurement, has provided valuable tools to investigate not only the static structures but also the dynamic properties of bent dsDNA. Here, we reviewed the single-molecule methods that have been used for investigating dsDNA bendability and new findings related to dsDNA bending. Single-molecule approaches are promising tools for revealing the unknown properties of dsDNA related to its bending, particularly in cells.


DNA , Fluorescence Resonance Energy Transfer , Fluorescence Resonance Energy Transfer/methods , Microscopy, Atomic Force
5.
Sci Rep ; 11(1): 10955, 2021 05 26.
Article En | MEDLINE | ID: mdl-34040104

The primary hallmark of Parkinson's disease (PD) is the generation of Lewy bodies of which major component is α-synuclein (α-Syn). Because of increasing evidence of the fundamental roles of α-Syn oligomers in disease progression, α-Syn oligomers have become potential targets for therapeutic interventions for PD. One of the potential toxicities of α-Syn oligomers is their inhibition of SNARE-mediated vesicle fusion by specifically interacting with vesicle-SNARE protein synaptobrevin-2 (Syb2), which hampers dopamine release. Here, we show that α-Syn monomers and oligomers cooperatively inhibit neuronal SNARE-mediated vesicle fusion. α-Syn monomers at submicromolar concentrations increase the fusion inhibition by α-Syn oligomers. This cooperative pathological effect stems from the synergically enhanced vesicle clustering. Based on this cooperative inhibition mechanism, we reverse the fusion inhibitory effect of α-Syn oligomers using small peptide fragments. The small peptide fragments, derivatives of α-Syn, block the binding of α-Syn oligomers to Syb2 and dramatically reverse the toxicity of α-Syn oligomers in vesicle fusion. Our findings demonstrate a new strategy for therapeutic intervention in PD and related diseases based on this specific interaction of α-Syn.


Membrane Fusion/drug effects , SNARE Proteins/antagonists & inhibitors , alpha-Synuclein/pharmacology , Amino Acid Sequence , Amino Acid Substitution , Dopamine/metabolism , Dopamine/pharmacology , Drug Evaluation, Preclinical , Liposomes , Membrane Lipids/metabolism , Models, Molecular , Mutation, Missense , Peptide Fragments/pharmacology , Point Mutation , Protein Binding , Protein Multimerization , Proteolipids/chemistry , Recombinant Fusion Proteins/pharmacology , SNARE Proteins/physiology , Vesicle-Associated Membrane Protein 2/antagonists & inhibitors , Vesicle-Associated Membrane Protein 2/physiology , alpha-Synuclein/chemistry , alpha-Synuclein/genetics , alpha-Synuclein/toxicity
...