Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Nucleic Acids Res ; 52(16): e77, 2024 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-39051548

RESUMEN

Somatic structural variations (SVs) in cancer can shuffle DNA content in the genome, relocate regulatory elements, and alter genome organization. Enhancer hijacking occurs when SVs relocate distal enhancers to activate proto-oncogenes. However, most enhancer hijacking studies have only focused on protein-coding genes. Here, we develop a computational algorithm 'HYENA' to identify candidate oncogenes (both protein-coding and non-coding) activated by enhancer hijacking based on tumor whole-genome and transcriptome sequencing data. HYENA detects genes whose elevated expression is associated with somatic SVs by using a rank-based regression model. We systematically analyze 1146 tumors across 25 types of adult tumors and identify a total of 108 candidate oncogenes including many non-coding genes. A long non-coding RNA TOB1-AS1 is activated by various types of SVs in 10% of pancreatic cancers through altered 3-dimensional genome structure. We find that high expression of TOB1-AS1 can promote cell invasion and metastasis. Our study highlights the contribution of genetic alterations in non-coding regions to tumorigenesis and tumor progression.


Asunto(s)
Elementos de Facilitación Genéticos , Regulación Neoplásica de la Expresión Génica , Neoplasias , Oncogenes , Humanos , Neoplasias/genética , Neoplasias/patología , Algoritmos , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo
2.
bioRxiv ; 2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38076958

RESUMEN

Somatic structural variations (SVs) in cancer can shuffle DNA content in the genome, relocate regulatory elements, and alter genome organization. Enhancer hijacking occurs when SVs relocate distal enhancers to activate proto-oncogenes. However, most enhancer hijacking studies have only focused on protein-coding genes. Here, we develop a computational algorithm "HYENA" to identify candidate oncogenes (both protein-coding and non-coding) activated by enhancer hijacking based on tumor whole-genome and transcriptome sequencing data. HYENA detects genes whose elevated expression is associated with somatic SVs by using a rank-based regression model. We systematically analyze 1,146 tumors across 25 types of adult tumors and identify a total of 108 candidate oncogenes including many non-coding genes. A long non-coding RNA TOB1-AS1 is activated by various types of SVs in 10% of pancreatic cancers through altered 3-dimensional genome structure. We find that high expression of TOB1-AS1 can promote cell invasion and metastasis. Our study highlights the contribution of genetic alterations in non-coding regions to tumorigenesis and tumor progression.

3.
J Biol Chem ; 297(4): 101128, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34461089

RESUMEN

Targeted strategies against specific driver molecules of cancer have brought about many advances in cancer treatment since the early success of the first small-molecule inhibitor Gleevec. Today, there are a multitude of targeted therapies approved by the Food and Drug Administration for the treatment of cancer. However, the initial efficacy of virtually every targeted treatment is often reversed by tumor resistance to the inhibitor through acquisition of new mutations in the target molecule, or reprogramming of the epigenome, transcriptome, or kinome of the tumor cells. At the core of this clinical problem lies the assumption that targeted treatments will only be efficacious if the inhibitors are used at their maximum tolerated doses. Such aggressive regimens create strong selective pressure on the evolutionary progression of the tumor, resulting in resistant cells. High-dose single agent treatments activate alternative mechanisms that bypass the inhibitor, while high-dose combinatorial treatments suffer from increased toxicity resulting in treatment cessation. Although there is an arsenal of targeted agents being tested clinically and preclinically, identifying the most effective combination treatment plan remains a challenge. In this review, we discuss novel targeted strategies with an emphasis on the recent cross-disciplinary studies demonstrating that it is possible to achieve antitumor efficacy without increasing toxicity by adopting low-dose multitarget approaches to treatment of cancer and metastasis.


Asunto(s)
Mesilato de Imatinib/uso terapéutico , Proteínas de Neoplasias , Neoplasias , Inhibidores de Proteínas Quinasas/uso terapéutico , Proteínas Quinasas/metabolismo , Animales , Humanos , Proteínas de Neoplasias/antagonistas & inhibidores , Proteínas de Neoplasias/metabolismo , Neoplasias/tratamiento farmacológico , Neoplasias/enzimología
4.
Nature ; 568(7751): 254-258, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30842661

RESUMEN

Mitochondrial metabolism is an attractive target for cancer therapy1,2. Reprogramming metabolic pathways could improve the ability of metabolic inhibitors to suppress cancers with limited treatment options, such as triple-negative breast cancer (TNBC)1,3. Here we show that BTB and CNC homology1 (BACH1)4, a haem-binding transcription factor that is increased in expression in tumours from patients with TNBC, targets mitochondrial metabolism. BACH1 decreases glucose utilization in the tricarboxylic acid cycle and negatively regulates transcription of electron transport chain (ETC) genes. BACH1 depletion by shRNA or degradation by hemin sensitizes cells to ETC inhibitors such as metformin5,6, suppressing growth of both cell line and patient-derived tumour xenografts. Expression of a haem-resistant BACH1 mutant in cells that express a short hairpin RNA for BACH1 rescues the BACH1 phenotype and restores metformin resistance in hemin-treated cells and tumours7. Finally, BACH1 gene expression inversely correlates with ETC gene expression in tumours from patients with breast cancer and in other tumour types, which highlights the clinical relevance of our findings. This study demonstrates that mitochondrial metabolism can be exploited by targeting BACH1 to sensitize breast cancer and potentially other tumour tissues to mitochondrial inhibitors.


Asunto(s)
Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/antagonistas & inhibidores , Hemina/uso terapéutico , Metformina/uso terapéutico , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Neoplasias de la Mama Triple Negativas/metabolismo , Animales , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/deficiencia , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Ciclo del Ácido Cítrico/fisiología , Transporte de Electrón/genética , Femenino , Glucosa/metabolismo , Hemina/metabolismo , Xenoinjertos , Humanos , Metformina/metabolismo , Ratones , Ratones Desnudos , Mitocondrias/genética , Proteolisis , Neoplasias de la Mama Triple Negativas/genética , Neoplasias de la Mama Triple Negativas/patología , Ensayos Antitumor por Modelo de Xenoinjerto
5.
Crit Rev Oncog ; 19(6): 447-54, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25597354

RESUMEN

Cancer is one of the deadliest diseases worldwide, accounting for about 8 million deaths a year. For solid tumors, cancer patients die as a result of the metastatic spread of the tumor to the rest of the body. Therefore, there is a clinical need for understanding the molecular and cellular basis of metastasis, identifying patients whose tumors are more likely to metastasize, and developing effective therapies against metastatic progression. Over the years, Raf kinase inhibitory protein (RKIP) has emerged as a natural suppressor of the metastatic process, constituting a tool for studying metastasis and its clinical outcomes. Here, we review RKIP's role as a metastasis suppressor and the signaling networks and genes regulated by RKIP in metastatic, triple-negative breast cancer. We also highlight the clinical implications and power of building gene signatures based on RKIP-regulated signaling modules in identifying cancer patients that are at higher risk for metastases. Finally, we highlight the potential of RKIP as a tool for developing new therapeutic strategies in cancer treatment.


Asunto(s)
Regulación Neoplásica de la Expresión Génica , Redes Reguladoras de Genes , Genes Supresores de Tumor , Metástasis de la Neoplasia/genética , Proteínas de Unión a Fosfatidiletanolamina/fisiología , Humanos , Sistema de Señalización de MAP Quinasas/fisiología , Neoplasias/genética , Neoplasias/patología , Transducción de Señal/genética , Neoplasias de la Mama Triple Negativas/genética , Neoplasias de la Mama Triple Negativas/patología
6.
Blood ; 121(24): 4821-31, 2013 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-23589674

RESUMEN

Malignant cells may evade death from cytotoxic agents if they are in a dormant state. The host microenvironment plays important roles in cancer progression, but how niches might control cancer cell dormancy is little understood. Here we show that osteopontin (OPN), an extracellular matrix molecule secreted by osteoblasts, can function to anchor leukemic blasts in anatomic locations supporting tumor dormancy. We demonstrate that acute lymphoblastic leukemia (ALL) cells specifically adhere to OPN in vitro and secrete OPN when localized to the endosteal niche in vivo. Using intravital microscopy to perform imaging studies of the calvarial bone marrow (BM) of xenografted mice, we show that OPN is highly expressed adjacent to dormant tumor cells within the marrow. Inhibition of the OPN-signaling axis significantly increases the leukemic cell Ki-67 proliferative index and leads to a twofold increase in tumor burden in treated mice. Moreover, using cell-cycle-dependent Ara-C chemotherapy to produce minimal residual disease (MRD) in leukemic mice, we show that OPN neutralization synergizes with Ara-C to reduce detectable BM MRD. Taken together, these data suggest that ALL interacts with extracellular OPN within the malignant BM, and that this interaction induces cell cycle exit in leukemic blasts, protecting them from cytotoxic chemotherapy.


Asunto(s)
Crisis Blástica/metabolismo , Médula Ósea/metabolismo , Osteoblastos/metabolismo , Osteopontina/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras/metabolismo , Microambiente Tumoral , Adulto , Animales , Anticuerpos Neutralizantes/farmacología , Antimetabolitos Antineoplásicos/farmacología , Crisis Blástica/tratamiento farmacológico , Crisis Blástica/genética , Crisis Blástica/patología , Médula Ósea/patología , Adhesión Celular/efectos de los fármacos , Adhesión Celular/genética , Niño , Preescolar , Citarabina/farmacología , Resistencia a Antineoplásicos/efectos de los fármacos , Resistencia a Antineoplásicos/genética , Femenino , Humanos , Antígeno Ki-67/genética , Antígeno Ki-67/metabolismo , Masculino , Ratones , Ratones SCID , Trasplante de Neoplasias , Neoplasia Residual/genética , Neoplasia Residual/metabolismo , Neoplasia Residual/patología , Osteoblastos/patología , Osteopontina/antagonistas & inhibidores , Osteopontina/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamiento farmacológico , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/patología , Transducción de Señal , Trasplante Heterólogo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA