Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.280
Filtrar
1.
Cell Commun Signal ; 22(1): 431, 2024 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-39243059

RESUMEN

Recently we have shown that protein disulfide isomerase (PDI or PDIA1) is involved in mediating chemically-induced, glutathione (GSH) depletion-associated ferroptotic cell death through NOS activation (dimerization) and NO accumulation. The present study aims to determine the role of PDI in mediating chemically-induced hepatocyte injury in vitro and in vivo and whether PDI inhibitors can effectively protect against chemically-induced hepatocyte injury. We show that during the development of erastin-induced ferroptotic cell death, accumulation of cellular NO, ROS and lipid-ROS follows a sequential order, i.e., cellular NO accumulation first, followed by accumulation of cellular ROS, and lastly cellular lipid-ROS. Cellular NO, ROS and lipid-ROS each play a crucial role in mediating erastin-induced ferroptosis in cultured hepatocytes. In addition, it is shown that PDI is an important upstream mediator of erastin-induced ferroptosis through PDI-mediated conversion of NOS monomer to its dimer, which then leads to accumulation of cellular NO, ROS and lipid-ROS, and ultimately ferroptotic cell death. Genetic manipulation of PDI expression or pharmacological inhibition of PDI function each can effectively abrogate erastin-induced ferroptosis. Lastly, evidence is presented to show that PDI is also involved in mediating acetaminophen-induced liver injury in vivo using both wild-type C57BL/6J mice and hepatocyte-specific PDI conditional knockout (PDIfl/fl Alb-cre) mice. Together, our work demonstrates that PDI is an important upstream mediator of chemically-induced, GSH depletion-associated hepatocyte ferroptosis, and inhibition of PDI can effectively prevent this injury.


Asunto(s)
Glutatión , Hepatocitos , Proteína Disulfuro Isomerasas , Especies Reactivas de Oxígeno , Proteína Disulfuro Isomerasas/metabolismo , Proteína Disulfuro Isomerasas/genética , Hepatocitos/metabolismo , Hepatocitos/efectos de los fármacos , Hepatocitos/patología , Animales , Glutatión/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Ratones , Ratones Endogámicos C57BL , Piperazinas/farmacología , Ferroptosis/efectos de los fármacos , Óxido Nítrico/metabolismo , Masculino , Humanos
2.
Breed Sci ; 74(1): 22-31, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-39246434

RESUMEN

Food shortages due to population growth and climate change are expected to occur in the near future as a problem that urgently requires solutions. Conventional breeding techniques, notably crossbreeding and mutation breeding, are known for being inefficient and time-consuming in obtaining seeds and seedlings with desired traits. Thus, there is an urgent need for novel methods for efficient plant breeding. Breeding by genome editing is receiving substantial attention because it can efficiently modify the target gene to obtain desired traits compared with conventional methods. Among the programmable sequence-specific nucleases that have been developed for genome editing, CRISPR-Cas12a and CRISPR-MAD7 nucleases are becoming more broadly adopted for the application of genome editing in grains, vegetables and fruits. Additionally, ST8, an improved variant of MAD7, has been developed to enhance genome editing efficiency and has potential for application to breeding of crops.

3.
Hum Mol Genet ; 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39251229

RESUMEN

α9-nAChR, a subtype of nicotinic acetylcholine receptor, is significantly overexpressed in female breast cancer tumor tissues compared to normal tissues. Previous studies have proposed that specific single nucleotide polymorphisms (SNPs) in the CHRNA9 (α9-nAChR) gene are associated with an increased risk of breast cancer in interaction with smoking. The study conducted a breast cancer risk assessment of the α9-nAChR SNP rs10009228 (NM_017581.4:c.1325A > G) in the Taiwanese female population, including 308 breast cancer patients and 198 healthy controls revealed that individuals with the heterozygous A/G or A/A wild genotype have an increased susceptibility to developing breast cancer in the presence of smoking compared to carriers of the G/G variant genotype. Our investigation confirmed the presence of this missense variation, resulting in an alteration of the amino acid sequence from asparagine (N442) to serine (S442) to facilitate phosphorylation within the α9-nAchR protein. Additionally, overexpression of N442 (A/A) in breast cancer cells significantly enhanced cell survival, migration, and cancer stemness compared to S442 (G/G). Four-line triple-negative breast cancer patient-derived xenograft (TNBC-PDX) models with distinct α9-nAChR rs10009228 SNP genotypes (A/A, A/G, G/G) further demonstrated that chronic nicotine exposure accelerated tumor growth through sustained activation of the α9-nAChR downstream oncogenic AKT/ERK/STAT3 pathway, particularly in individuals with the A/G or A/A genotype. Collectively, our study established the links between genetic variations in α9-nAChR and smoking exposure in promoting breast tumor development. This emphasizes the need to consider gene-environment interactions carefully while developing effective breast cancer prevention and treatment strategies.

4.
Angew Chem Int Ed Engl ; : e202413350, 2024 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-39266462

RESUMEN

Photocaging is an emerging protocol for precisely manipulating spatial and temporal behaviors over biological activity. However, the red/near-infrared light-triggered photolysis process of current photocage is largely singlet oxygen (1O2)-dependent and lack of compatibility with other reactive oxygen species (ROS)-activated techniques, which has proven to be the major bottleneck in achieving efficient and precise treatment. Herein, we reported a lactosylated photocage BT-LRC by covalently incorporating camptothecin (CPT) into hybrid BODIPY-TPE fluorophore via the superoxide anion radical (O2-•)-cleavable thioketal bond for type I photodynamic therapy (PDT) and anticancer drug release. Amphiphilic BT-LRC could be self-assembled into aggregation-induced emission (AIE)-active nanoparticles (BT-LRCs) owing to the regulation of carbohydrate-carbohydrate interactions (CCIs) among neighboring lactose units in the nanoaggregates. BT-LRCs could simultaneously generate abundant O2-• through the aggregation modulated by lactose interactions, and DNA-damaging agent CPT was subsequently and effectively released. Notably, the type I PDT and CPT chemotherapy collaboratively amplified the therapeutic efficacy in HepG2 cells and tumor-bearing mice. Furthermore, the inherent AIE property of BT-LRCs endowed the photocaged prodrug with superior bioimaging capability, which provided a powerful tool for real-time tracking and finely tuning the PDT and photoactivated drug release behavior in tumor therapy.

5.
J Cancer ; 15(16): 5318-5328, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39247587

RESUMEN

Bladder cancer is the most prevalent type of cancer in Taiwan, and therefore, enhancing the diagnostic sensitivity of biomarkers for early-stage tumors and identifying therapeutic targets to improve patient survival rates are essential. Although Sushi Domain Containing 2 (SUSD2) dysfunction has been identified in several types of human cancer, its biological role in bladder cancer remains unclear. Analysis of The Cancer Genome Atlas revealed significantly higher expression of SUSD2 mRNA in bladder cancer tissues than in adjacent normal tissues. This elevated expression of SUSD2 significantly correlated with pathological stage (p = 0.029), pN stage (p < 0.001), and pM stage (p = 0.047). Univariate analysis revealed that high SUSD2 expression was associated with decreased overall survival (crude hazard ratio = 1.70, 95% confidence interval = 1.13-2.56, p = 0.01). Multivariate analysis revealed a significant correlation between high SUSD2 expression and poor survival outcomes (adjusted hazard ratio = 1.53, 95% confidence interval = 1.01-2.31, p = 0.043). IHC analysis revealed a significant correlation between elevated SUSD2 protein levels and unfavorable pathological stages (p < 0.001). SUSD2 suppression significantly reduced the proliferation, colony formation, and invasion of bladder cancer cells. In addition, cell cycle analysis revealed that SUSD2 knockdown induced G2/M phase arrestin bladder cancer cells. Tumor Immune Estimation Resource analysis indicated that expression of SUSD2 was significantly associated with macrophage infiltration and M2 macrophage polarization in bladder cancer. In addition, miR-383-5p directly targeted the 3'UTR of SUSD2, with its ectopic expression inhibiting the growth and motility of bladder cancer cells. Our study revealed that miR-383-5p/SUSD2 axis dysfunction may contribute to a poor prognosis for bladder cancer by affecting cell growth, metastasis, and the tumor microenvironment.

6.
Mol Cell Biochem ; 2024 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-39231894

RESUMEN

The degradation of proteasomes or lysosomes is emerging as a principal determinant of programmed death ligand 1 (PDL1) expression, which affects the efficacy of immunotherapy in various malignancies. Intracellular cholesterol plays a central role in maintaining the expression of membrane receptors; however, the specific effect of cholesterol on PDL1 expression in cancer cells remains poorly understood. Cholesterol starvation and stimulation were used to modulate the cellular cholesterol levels. Immunohistochemistry and western blotting were used to analyze the protein levels in the samples and cells. Quantitative real-time PCR, co-immunoprecipitation, and confocal co-localization assays were used for mechanistic investigation. A xenograft tumor model was constructed to verify these results in vivo. Our results showed that cholesterol suppressed the ubiquitination and degradation of PDL1 in hepatocellular carcinoma (HCC) cells. Further mechanistic studies revealed that the autocrine motility factor receptor (AMFR) is an E3 ligase that mediated the ubiquitination and degradation of PDL1, which was regulated by the cholesterol/p38 mitogenic activated protein kinase axis. Moreover, lowering cholesterol levels using statins improved the efficacy of programmed death 1 (PD1) inhibition in vivo. Our findings indicate that cholesterol serves as a signal to inhibit AMFR-mediated ubiquitination and degradation of PDL1 and suggest that lowering cholesterol by statins may be a promising combination strategy to improve the efficiency of PD1 inhibition in HCC.

7.
Brain Res ; : 149244, 2024 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-39293677

RESUMEN

BACKGROUND: Postural control imposes higher demands on the central neural system (CNS), and age-related declines or incomplete CNS development often result in challenges performing tasks like forward postural leaning. Studies on older adults suggest increased variability in center of pressure (COP), greater muscle co-activations, and reduced corticospinal control during forward leaning tasks. However, the understanding of these features in children remains unclear. Specifically, it is uncertain whether forward leaning poses greater challenges for young children compared to adults, given the ongoing maturation of CNS during development. Understanding the distinct neuromuscular patterns observed during postural leaning could help optimize therapeutic strategies aimed at improving postural control in pediatric populations. METHODS: 12 typically developing children (5.91 ±â€¯1.37 years) and 12 healthy young adults (23.16 ±â€¯1.52 years) participated in a dynamic leaning forward task aimed at matching a COP target in the anterior-posterior direction as steadily as possible. Participants traced a triangular trajectory involving forward leaning (FW phase) to 60 % of their maximum lean distance and backward returning (BW phase) to the neutral standing position. Surface electromyography (sEMG) from muscles including gastrocnemius medialis (GM), soleus (SOL), and tibialis anterior (TA) were collected during both phases. COP variability was assessed using the standard deviation (SD) of COP displacements. Muscle co-activation indexes (CI) for ankle plantar and dorsal flexors (SOL/TA, GM/TA) were derived from sEMG activities. Intermuscular coherence in the beta band (15-30 Hz) was also analyzed to evaluate corticospinal drive. RESULTS: Children exhibited a significantly greater SD of COP compared to young adults (p < 0.01) during the BW phase. They also demonstrated higher CI (p < 0.05) and reduced coherence of SOL/TA (p < 0.05) compared to young adults during this phase. No significant group differences were observed during the FW phase. Within the children's group, COP variability was significantly higher in the BW phase compared to the FW phase (p < 0.01). Moreover, children displayed greater CI (p < 0.01) and reduced coherence of SOL/TA (p < 0.01) during the BW phase compared to the FW phase. Conversely, no significant phase effects were observed in the adult group. Furthermore, sEMG measures were significantly correlated with COP variability (p < 0.05). CONCLUSIONS: The findings of this small study suggest that age-related differences in CNS development influence the modulation of corticospinal drive to ankle muscles (e.g., SOL/TA) during childhood, particularly supporting the existence of a separate pathway underlying the control of forward lean and backward returning.

8.
Food Chem X ; 24: 101815, 2024 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-39290753

RESUMEN

Thinned unripe kiwifruits (TUK) are considered the major agro by-products in kiwifruit production. To promote their potential applications, polyphenols and biological effects of unripe fruits from nine commercial kiwifruit cultivars were compared. Our findings showed that TUK were rich in bioactive polyphenols, which varied greatly by different cultivars. Indeed, catechin, epicatechin, procyanidin PB1, procyanidin B2, protocatechuic acid, neochlorogenic acid, and gallic acid were measured as the major phenolic components in most TUK, with the highest levels observed in 'Hongao' and 'Cuiyu' cultivars. Furthermore, TUK exerted strong in vitro antioxidant capacities, inhibitory effects on digestive enzymes, and anti-inflammatory activities. Particularly, their stronger antioxidant effects and inhibitory effects on digestive enzymes were probably attributed to their higher contents of phenolic compounds, especially procyanidin B2. Collectively, our findings reveal that TUK are potential resources of valuable polyphenols, which can be exploited as natural antioxidants and natural inhibitors of α-glucosidase and α-amylase.

10.
Environ Toxicol ; 2024 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-39171862

RESUMEN

Oxyresveratrol (OxyR) exerts biological and pharmacological effects in a variety of tumor cells, including antioxidant action, antitumor activity, and proapoptotic effects. However, the regulation of targeted signaling pathways by OxyR and the mechanism underlying these effects in human renal cell carcinoma (RCC) have been less studied. We observed that OxyR at noncytotoxic doses did not affect the growth of human RCC cells or normal kidney HK2 cells. OxyR inhibited ACHN and Caki-1 cell migration and invasion through targeting matrix metalloproteinase 1 (MMP1) expression. Analysis of clinical databases showed that high MMP1 expression is associated with lower overall survival (OS) in these cancers (p < 0.01). OxyR significantly inhibited the mRNA and protein expression of Sp1. Furthermore, luciferase assay results showed that OxyR inhibited Sp1 transcriptional activity. Additionally, OxyR preferentially suppressed the activation of ERK and PKCα. Treatment with U0126 (MEK inhibitor) or G06976 (PKCα inhibitor) clearly decreased Sp1 and MMP1 expression and inhibited RCC cell migration and invasion. In conclusion, OxyR may be a potential antitumor therapy for the inhibition of migration and invasion by controlling p-ERK/Sp1 and p-PKCα/Sp1-mediated MMP1 expression in RCC.

11.
Adv Sci (Weinh) ; : e2400370, 2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-39113226

RESUMEN

NK2 Homeobox 1 (NKX2-1) is a well-characterized pathological marker that delineates lung adenocarcinoma (LUAD) progression. The advancement of LUAD is influenced by the immune tumor microenvironment through paracrine signaling. However, the involvement of NKX2-1 in modeling the tumor immune microenvironment is still unclear. Here, the downregulation of NKX2-1 is observed in high-grade LUAD. Meanwhile, single-cell RNA sequencing and Visium in situ capturing profiling revealed the recruitment and infiltration of neutrophils in orthotopic syngeneic tumors exhibiting strong cell-cell communication through the activation of CXCLs/CXCR2 signaling. The depletion of NKX2-1 triggered the expression and secretion of CXCL1, CXCL2, CXCL3, and CXCL5 in LUAD cells. Chemokine secretion is analyzed by chemokine array and validated by qRT-PCR. ATAC-seq revealed the restrictive regulation of NKX2-1 on the promoters of CXCL1, CXCL2, and CXCL5 genes. This phenomenon led to increased tumor growth, and conversely, tumor growth decreased when inhibited by the CXCR2 antagonist SB225002. This study unveils how NKX2-1 modulates the infiltration of tumor-promoting neutrophils by inhibiting CXCLs/CXCR2-dependent mechanisms. Hence, targeting CXCR2 in NKX2-1-low tumors is a potential antitumor therapy that may improve LUAD patient outcomes.

12.
J Pain Res ; 17: 2727-2739, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39193463

RESUMEN

Introduction: Diabetic peripheral neuropathy (DPN) affects patients' quality of life significantly. To date, selecting the appropriate treatment remains challenging. While electroacupuncture (EA) has shown promise as an effective adjunct therapy for DPN, and infrared thermography (IRT) has been considered as a potential predictor of treatment efficacy, the evidence for both remains inconclusive. As such, the objectives of this trial are twofold: to ascertain the efficacy of EA for DPN, and to explore the feasibility of IRT as an adjunctive objective tool for efficacy assessment. Methods: The study was designed as a randomized, parallel, controlled trial. It spanned over 6 weeks of treatment and an additional 4 weeks of follow-up. 104 eligible participants will be stratified for severity of disease: mild with Toronto clinical scoring system(TCSS) score 6-8, moderate (TCSS score 9-11), and severe (TCSS score 12-19), and each level will be randomised in a 1:1 ratio into a EA group and waiting-list group. The waiting-list group received only the current conventional medication, while the EA group received an additional 12 EA sessions on top of the conventional medication. The primary outcome indicators is nerve conduction velocity (NCV), which will be tested at the baseline and week 6. Total clinical efficiency, TCSS, Clinical symptoms score of Traditional Chinese Medicine (TCM), Patient global impression of change(PGIC), Temperature of regions of interest (ROIs), and Physico chemical examination will be used as secondary outcome indicators. In addition, safety assessment will be determined based on adverse events during the trial. Conclusion: The expected results of this study will determine whether EA improves efficacy in the treatment of DPN with an acceptable safety profile, and investigating variations in the efficacy of EA across different levels of DPN severity. Furthermore, it will explore the viability of IRT as an objective measure for evaluating treatment effectiveness for DPN. Clinical Trial Registration: ClinicalTrials.gov identifier, NCT06054087.

13.
Ultrason Sonochem ; 109: 107014, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39111249

RESUMEN

Buckwheat sprouts are rich in pectic polysaccharides, which possess numerous health-improving benefits. However, the precise structure-activity relationship of pectic polysaccharides from Tartary buckwheat sprouts (TP) is still scant, which ultimately restricts their applications in the food industry. Hence, both ultrasound-assisted Fenton treatment (UAFT) and mild alkali treatment (MATT) were utilized for the modification of TP, and then the effects of physicochemical characteristics of original and modified TPs on their bioactivities were assessed. Our findings reveled that the UAFT treatment could precisely reduce TP's molecular weight, with the levels decreased from 8.191 × 104 Da to 0.957 × 104 Da. Meanwhile, the MATT treatment could precisely reduce TP's esterification degree, with the values decreased from 28.04 % to 4.72 %. Nevertheless, both UAFT and MATT treatments had limited effects on the backbone and branched chain of TP. Moreover, our findings unveiled that the UAFT treatment could notably promote TP's antioxidant, antiglycation, and immunostimulatory effects, while remarkedly reduce TP's anti-hyperlipidemic effect, which were probably owing to that the UAFT treatment obviously reduced TP's molecular weight. Additionally, the MATT treatment could also promote TP's immunostimulatory effect, which was probably attributed to that the MATT treatment significantly decreased TP's esterification degree. Interestingly, the MATT treatment could regulate TP's antioxidant and antiglycation effects, which was probably attributed to that the MATT treatment simultaneously reduced its esterification degree and bound phenolics. Our findings are conducive to understanding TP's structure-activity relationship, and can afford a scientific theoretical basis for the development of functional or healthy products based on TPs. Besides, the UAFT treatment can be a promising approach for the modification of TP to improve its biological functions.


Asunto(s)
Álcalis , Fagopyrum , Polisacáridos , Ondas Ultrasónicas , Fagopyrum/química , Polisacáridos/química , Polisacáridos/farmacología , Polisacáridos/aislamiento & purificación , Álcalis/química , Antioxidantes/química , Antioxidantes/farmacología , Hierro/química , Peróxido de Hidrógeno/química , Fenómenos Químicos , Animales , Peso Molecular
14.
J Gastrointest Surg ; 2024 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-39154708

RESUMEN

BACKGROUND: Owing to the heterogeneity of underlying primary tumors, noncolorectal, nonneuroendocrine metastases to the liver (NCNNMLs), although relatively rare, pose major challenges to treatment and long-term management. Despite being considered the gold standard for colorectal cancer liver metastases, the role of surgical resection for NCNNML remains controversial. Furthermore, advancements in locoregional treatment modalities, such as ablation and various chemotherapeutic modalities, have contributed to the treatment of patients with NCNNML. METHODS: This was a comprehensive review of literature that used Medline/PubMed, Google Scholar, the Cochrane Library, and the Web of Science, which were accessed between 2014 and 2024. RESULTS: NCNNMLs are rare tumor entities with varied presentation and outcomes. A multidisciplinary approach, which includes chemotherapy, surgery, and interventional radiologic techniques, can be implemented with good results. CONCLUSION: Given the complex nature of NCNNML, its management should be highly individualized and multidisciplinary. Locoregional treatments, such as surgical resection and/or ablation, may be more appropriate for select patients and should be offered as a viable therapeutic option for a subset of individuals.

15.
ACS Nano ; 18(33): 22122-22138, 2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-39119697

RESUMEN

Binding of anti-PEG antibodies to poly(ethylene glycol) (PEG) on the surface of PEGylated liposomal doxorubicin (PLD) in vitro and in rats can activate complement and cause the rapid release of doxorubicin from the liposome interior. Here, we find that irinotecan liposomes (IL) and L-PLD, which have 16-fold lower levels of 1,2-distearoyl-sn-glycero-3-phosphoethanolamine (DSPE)-PEG2000 in their liposome membrane as compared to PLD, generate less complement activation but remain sensitive to destabilization and drug release by anti-PEG antibodies. Complement activation and liposome destabilization correlated with the theoretically estimated number of antibody molecules bound per liposome. Drug release from liposomes proceeded through the alternative complement pathway but was accelerated by the classical complement pathway. In contrast to PLD destabilization by anti-PEG immunoglobulin G (IgG), which proceeded by the insertion of membrane attack complexes in the lipid bilayer of otherwise intact PLD, anti-PEG IgG promoted the fusion of L-PLD, and IL to form unilamellar and oligo-vesicular liposomes. Anti-PEG immunoglobulin M (IgM) induced drug release from all liposomes (PLD, L-PLD, and IL) via the formation of unilamellar and oligo-vesicular liposomes. Anti-PEG IgG destabilized both PLD and L-PLD in rats, indicating that the reduction of PEG levels on liposomes is not an effective approach to prevent liposome destabilization by anti-PEG antibodies.


Asunto(s)
Doxorrubicina , Liposomas , Polietilenglicoles , Polietilenglicoles/química , Liposomas/química , Doxorrubicina/química , Doxorrubicina/farmacología , Doxorrubicina/análogos & derivados , Animales , Ratas , Anticuerpos/química , Anticuerpos/inmunología , Activación de Complemento/efectos de los fármacos , Fosfatidiletanolaminas/química , Liberación de Fármacos
17.
Sci Adv ; 10(32): eado5429, 2024 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-39121213

RESUMEN

The mechanisms of plant drought resistance are unclear but may involve membrane trafficking and metabolic reprogramming, including proline accumulation. Forward genetic screening using a proline dehydrogenase 1 (ProDH1) promoter:reporter identified a drought hypersensitive mutant with a single-amino acid substitution (P335L) in the nonphototrophic hypocotyl 3 (NPH3) domain of NPH3/root phototropism 2-like 5 (NRL5)/naked pins in Yucca 8 (NPY8). Further experiments found that NRL5 and other NPH3 domain proteins are guanosine triphosphatases (GTPases). NRL5, but not NRL5P335L, interacted with the RABE1c and RABH1b GTPases and the soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs) Vesicle-Associated Membrane Protein (VAMP)721/722. These proteins controlled NRL5 localization and connection to trafficking while also being genetically downstream of, and potentially regulated by, NRL5. These data demonstrate that NRL5-mediated restraint of proline catabolism is required for drought resistance and also reveal unexpected functions of the NPH3 domain such that the role of NPH3 domain proteins in signaling, trafficking, and cellular polarity can be critically reevaluated.


Asunto(s)
Sequías , Transporte de Proteínas , Arabidopsis/genética , Arabidopsis/metabolismo , GTP Fosfohidrolasas/metabolismo , GTP Fosfohidrolasas/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas , Dominios Proteicos , Estrés Fisiológico , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Mutación , Resistencia a la Sequía
18.
Cancer Control ; 31: 10732748241271682, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39105433

RESUMEN

BACKGROUND: The effect of neoadjuvant chemotherapy (NACT) in gallbladder cancer (GBC) patients remains controversial. The aim of this study was to assess the impact of NACT on overall survival (OS) and cancer specific survival (CSS) in patients with localized or locoregionally advanced GBC, and to explore possible protective predictors for prognosis. METHODS: Data for patients with localized or locoregionally advanced GBC (i.e., categories cTx-cT4, cN0-2, and cM0) from 2004 to 2020 were collected from the Surveillance, Epidemiology, and End Results (SEER) database. Patients in the NACT and non-NACT groups were propensity score matched (PSM) 1:3, and the Kaplan-Meier method and log-rank test were performed to analyze the impact of NACT on OS and CSS. Univariable and multivariable Cox regression models were applied to identify the possible prognostic factors. Subgroup analysis was conducted to identify patients who would benefit from NACT. RESULTS: Of the 2676 cases included, 78 NACT and 234 non-NACT patients remained after PSM. In localized or locoregionally advanced GBC patients, the median OS of the NACT and non-NACT was 31 and 16 months (log-rank P < 0.01), and the median CSS of NACT and non-NACT was 32 and 17 months (log-rank P < 0.01), respectively. Longer median OS (31 vs 17 months, log-rank P < 0.01) and CSS (32 vs 20 months, log-rank P < 0.01) was associated with NACT compared with surgery alone. Multivariable Cox regression analysis showed that NACT, stage, and surgery type were prognostic factors for OS and CSS in GBC patients. Subgroup analysis revealed that the survival hazard ratios (HRs) of NACT vs non-NACT for localized or locoregionally advanced GBC patients were significant in most subgroups. CONCLUSIONS: NACT may provide therapeutic benefits for localized or locoregionally advanced GBC patients, especially for those with advanced stage, node-positive, poorly differentiated or undifferentiated disease. NACT combined with radical surgery was associated with a survival advantage. Therefore, NACT combined with surgery may provide a better treatment option for resectable GBC patients.


Asunto(s)
Neoplasias de la Vesícula Biliar , Terapia Neoadyuvante , Puntaje de Propensión , Programa de VERF , Humanos , Neoplasias de la Vesícula Biliar/patología , Neoplasias de la Vesícula Biliar/mortalidad , Neoplasias de la Vesícula Biliar/tratamiento farmacológico , Neoplasias de la Vesícula Biliar/terapia , Femenino , Masculino , Terapia Neoadyuvante/métodos , Terapia Neoadyuvante/estadística & datos numéricos , Persona de Mediana Edad , Pronóstico , Anciano , Quimioterapia Adyuvante/estadística & datos numéricos , Quimioterapia Adyuvante/métodos , Estadificación de Neoplasias , Estimación de Kaplan-Meier
19.
Neuroscience ; 557: 24-36, 2024 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-39128700

RESUMEN

OBJECTIVE: This study aims to investigate the effect of electroacupuncture (EA) treatment on depression, and the potential molecular mechanism of EA in depression-like behaviors rats. METHODS: A total of 40 male Sprague Dawley rats were divided into three groups: normal control, chronic unpredictable mild stress (CUMS), and EA (CUMS + EA). The rats in CUMS and EA groups underwent chronic stress for 10 weeks, and EA group rats received EA treatment for 4 weeks starting from week 7. Body weight and behavioral tests, including the sucrose preference test (SPT), the forced swimming test (FST), and the open field test (OFT) were monitored. Gut microbiota composition was assessed via 16S rDNA sequencing, and lipid metabolism was analyzed by using UPLC-Q-TOF/MS technology. RESULTS: In comparison to CUMS group, EA could improve the behavior including bodyweight, immovability time, sucrose preference index, crossing piece index and rearing times index. After 4 weeks of EA treatment, 5-HT in hippocampus, serum and colon of depressive rats were simultaneously increased, indicating a potential alleviation of depression-like behaviors. In future studies revealed that EA could regulate the distribution and functions of gut microbiota, and improve the intestinal barrier function of CUMS rats. The regulation of intestinal microbial homeostasis by EA may further affect lipid metabolism in CUMS rats, and thus play an antidepressant role. CONCLUSION: This study suggested that EA has potential antidepressant effects by regulating gut microbiota composition and abundance, subsequently affecting lipid metabolism.


Asunto(s)
Depresión , Modelos Animales de Enfermedad , Electroacupuntura , Microbioma Gastrointestinal , Ratas Sprague-Dawley , Estrés Psicológico , Animales , Electroacupuntura/métodos , Microbioma Gastrointestinal/fisiología , Masculino , Estrés Psicológico/terapia , Estrés Psicológico/microbiología , Estrés Psicológico/metabolismo , Depresión/terapia , Depresión/microbiología , Hipocampo/metabolismo , Ratas , Serotonina/metabolismo , Conducta Animal/fisiología , Metabolismo de los Lípidos/fisiología
20.
Int J Mol Sci ; 25(16)2024 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-39201664

RESUMEN

Eccentric training induces greater hypertrophy while causing more muscle damage than concentric training. This study examined the effects of small-range eccentric contractions (SR-ECCs) and large-range eccentric contractions (LR-ECCs) on muscle morphology, contractility, and damage in rats. Thirty male Fischer 344 rats were divided into five groups: small-range ECC single-bout (SR-ECCSB, n = 4), large-range ECC single-bout (LR-ECCSB, n = 4), SR-ECC intervention (SR-ECCIntv, n = 7), LR-ECC intervention (LR-ECCIntv, n = 8), and control (Cont, n = 7). These groups underwent transcutaneous electrical stimulation involving 80 ECCs twice a week for four weeks. The results indicated that the LR-ECCSB group had more Evans blue dye-positive fibers than other groups. The SR-ECCIntv group showed no increase in the mean myofiber cross-sectional area. However, Pax7+ and Ki67+ cells significantly increased in both ECCIntv groups compared to the Cont group, and the connective tissue area was significantly greater in the LR-ECCIntv than in others. Muscle force was lower in both ECCIntv groups compared to the Cont group. These findings suggest that SR-ECC intervention may induce a smaller increase in the number of fibers with a large myofiber cross-sectional area and satellite cell proliferation with less muscle damage and myofibrosis compared to LR-ECCs.


Asunto(s)
Contracción Muscular , Músculo Esquelético , Condicionamiento Físico Animal , Ratas Endogámicas F344 , Animales , Masculino , Ratas , Músculo Esquelético/fisiología , Músculo Esquelético/metabolismo , Fuerza Muscular , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/fisiología , Hipertrofia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA