Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ACS Appl Mater Interfaces ; 15(35): 41992-42003, 2023 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-37611072

RESUMEN

Dielectric elastomer actuators (DEAs) have been proposed as a promising technology for developing soft robotics and stretchable electronics due to their large actuation. Among available fabrication techniques, inkjet printing is a digital, mask-free, material-saving, and fast technology, making it versatile and appealing for fabricating DEA electrodes. However, there is still a lack of suitable materials for inkjet-printed electrodes. In this study, multiple carbon black (CB) inks were developed and tested as DEA electrodes inkjet-printed on acrylic membranes (VHB). Triethylene glycol monomethyl ether (TGME) and chlorobenzene (CLB) were selected to disperse CB. The inks' stability, particle size, surface tension, viscosity, electrical resistance, and printability were characterized. The DEA with Ink-TGME/CLB (mixture solvent) electrodes obtained 80.63% area strain, a new benchmark for the DEA actuation with CB powder electrodes on VHB. The novelty of this work involves the disclosure of a new ink recipe (TGME/CLB/CB) for inkjet printing that can obtain stable drop formations with a small nozzle (17 × 17 µm), high resolution (∼25 µm, approaching the limit of drop-on-demand inkjet printing), and the largest area strain of DEAs under similar conditions, distinguishing this contribution from the previous works, which is important for the fabrication and miniaturization of DEA-based soft and stretchable electronics.

2.
Adv Mater ; 29(26)2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28452147

RESUMEN

Advanced flexible batteries with high energy density and long cycle life are an important research target. Herein, the first paradigm of a high-performance and stable flexible rechargeable quasi-solid-state Zn-MnO2 battery is constructed by engineering MnO2 electrodes and gel electrolyte. Benefiting from a poly(3,4-ethylenedioxythiophene) (PEDOT) buffer layer and a Mn2+ -based neutral electrolyte, the fabricated Zn-MnO2 @PEDOT battery presents a remarkable capacity of 366.6 mA h g-1 and good cycling performance (83.7% after 300 cycles) in aqueous electrolyte. More importantly, when using PVA/ZnCl2 /MnSO4 gel as electrolyte, the as-fabricated quasi-solid-state Zn-MnO2 @PEDOT battery remains highly rechargeable, maintaining more than 77.7% of its initial capacity and nearly 100% Coulombic efficiency after 300 cycles. Moreover, this flexible quasi-solid-state Zn-MnO2 battery achieves an admirable energy density of 504.9 W h kg-1 (33.95 mW h cm-3 ), together with a peak power density of 8.6 kW kg-1 , substantially higher than most recently reported flexible energy-storage devices. With the merits of impressive energy density and durability, this highly flexible rechargeable Zn-MnO2 battery opens new opportunities for powering portable and wearable electronics.

3.
Carbohydr Polym ; 136: 485-92, 2016 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-26572379

RESUMEN

Cellulose nanofibrils (CNFs) are attracting much attention for the advantages of excellent mechanical strength, good optical transparency, and high surface area. An eco-friendly and energy-saving method was created in this work to produce highly negative charged CNFs using high-pressure mechanical defibrillation coupled with strong acid hydrolysis pretreatments. The morphological development, zeta potential, crystal structure, chemical composition and thermal degradation behavior of the resultant materials were evaluated by transmission electron microscopy (TEM), zeta potential analysis, X-ray diffraction (XRD), Fourier transform infrared spectrometry (FTIR), and thermogravimetric analysis (TGA). These CNFs were fully separated, surface-charged, and highly entangled. They showed a large fiber aspect ratio compared to traditional cellulose nanocrystrals that are produced by strong acid hydrolysis. Compared to hydrochloric acid hydrolysis, the CNFs produced by sulfuric acid pretreatments were completely defibrillated and presented stable suspensions (or gels) even at low fiber content. On the other hand, CNFs pretreated by hydrochloric acid hydrolysis trended to aggregate because of the absence of surface charge. The crystallinity index (CI) of CNFs decreased because of mechanical defibrillation, and then increased dramatically with increased sulfuric acid concentration and reaction time. FTIR analysis showed that the C-O-SO3 group was introduced on the surfaces of CNFs during sulfuric acid hydrolysis. These sulfate groups accelerated the thermal degradation of CNFs, which occurred at lower temperature than wood pulp, indicating that the thermal stability of sulfuric acid hydrolyzed CNFs was decreased. The temperature of the maximum decomposition rate (Tmax) and the maximum weight-loss rates (MWLRmax) were much lower than for wood pulp because of the retardant effect of sulfuric acid during the combustion of CNFs. By contrast, the CNFs treated with hydrochloric acid had better thermal stability, because no functional groups were introduced on the surface.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...