Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Sci Food Agric ; 2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38872574

RESUMEN

BACKGROUND: The effect of oleogels prepared with peanut oil and different concentrations of γ-oryzanol and ß-sitosterol mixture (γ/ß; 20, 40, 60, 80 and 100 g kg-1) on the physicochemical and gel properties of myofibrillar protein (MP) was investigated. RESULTS: The solubility and average particle size of MP first decreased and then increased with increasing γ/ß concentration. Peanut oil or oleogels could induce the exposure of hydrophobic amino acids and the unfolding of MP, thus significantly increasing the surface hydrophobicity, sulfhydryl content and absolute value of zeta potential, which reached maximum values when the γ/ß concentration was 60 g kg-1 (P < 0.05). The addition of peanut oil decreased the gel strength and water holding capacity of MP gel. However, oleogels prepared with 60 g kg-1 γ/ß could significantly increase the hydrophobic interactions and disulfide bond content of MP gel (P < 0.05), which promoted the crosslinking and aggregation of MP, enhancing the gel properties. Peanut oil had no significant influence on the secondary structure of MP, while oleogels promoted the transition of MP conformation from α-helix to ß-sheet structure. The results of light microscopy and confocal laser scanning microscopy indicated that oleogels prepared with 60 g kg-1 γ/ß filled in the pores of MP gel network to form denser and more uniform structure. CONCLUSION: Oleogels prepared with 60 g kg-1 γ/ß could effectively improve the quality of MP gel and have promising application prospects in surimi products. © 2024 Society of Chemical Industry.

2.
Food Chem ; 455: 139903, 2024 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-38824733

RESUMEN

The effects of oat ß-glucan (OG) combined with ultrasound-assisted treatment on thermal aggregation behavior of silver carp myofibrillar protein (MP) under low salt concentration were investigated. The particle size and turbidity of MP were increased to higher levels by OG participation or ultrasound treatment during the two-stage heating. Both OG and ultrasonic treatment promoted the unfolding of MP structure, evidenced by the gradual decrease of α-helix content and fluorescence intensity, as well as the increase of ß-sheet content, surface hydrophobicity and sulfhydryl content. Compared to solely OG or ultrasonic treatment, the combination of OG and ultrasound further promoted the unfolding of MP and more sulfhydryl groups were exposed in the pre-heating stage, which was conducive to strengthen the chemical forces between MP molecules. Additionally, AFM analysis revealed that the apparent morphology of the OG combined with ultrasonic treated group exhibited a smoother surface and a more uniform distribution of aggregates.


Asunto(s)
Carpas , Calor , Interacciones Hidrofóbicas e Hidrofílicas , beta-Glucanos , Animales , beta-Glucanos/química , Proteínas de Peces/química , Avena/química , Proteínas Musculares/química , Agregado de Proteínas , Cloruro de Sodio/química , Tamaño de la Partícula
3.
Int J Biol Macromol ; 261(Pt 2): 129794, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38296148

RESUMEN

Inhibition of acid phosphatase, which significantly contributes to inosine 5'-monophosphate (IMP) degradation, is crucial for preventing flavor deterioration of aquatic products during storage. In this study, the inhibitory effect of epicatechin gallate (ECG) on the activity of acid phosphatase isozymes (ACPI and ACPII) was analyzed using inhibition kinetics, fluorescence spectroscopy, isothermal titration calorimetry, and molecular simulation. ACPI and ACPII with molecular weights of 59.5 and 37.3 kDa, respectively, were purified from rainbow trout liver. ECG reversibly inhibited ACPI and ACPII activities via mixed-type inhibition, with half maximal inhibitory concentration (IC50) of 0.24 ± 0.01 mmol/L and 0.27 ± 0.03 mmol/L, respectively. Fluorescence spectra indicated that ECG statically quenched the intrinsic fluorescence of ACPI and ACPII. ECG could spontaneously bind to ACPI and ACPII through hydrogen bonding and van der Waals forces and exhibited a higher affinity for ACPI than for ACPII. In addition, molecular dynamic simulation revealed that ECG-ACPI and ECG-ACPII complexes were relatively stable during the entire simulation process. Our findings provide a theoretical basis for the use of ECG as an inhibitor of ACP to improve the flavor of aquatic products.


Asunto(s)
Catequina/análogos & derivados , Oncorhynchus mykiss , Animales , Oncorhynchus mykiss/metabolismo , Simulación del Acoplamiento Molecular , Hígado , Fosfatasa Ácida/metabolismo
4.
Molecules ; 28(24)2023 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-38138638

RESUMEN

With the proposal of replacing toxic solvents with non-toxic solvents in the concept of green chemistry, the development and utilization of new green extraction techniques have become a research hotspot. Phenolic compounds in edible oils have good antioxidant activity, but due to their low content and complex matrix, it is difficult to achieve a high extraction rate in a green and efficient way. This paper reviews the current research status of novel extraction materials in solid-phase extraction, including carbon nanotubes, graphene and metal-organic frameworks, as well as the application of green chemical materials in liquid-phase extraction, including deep eutectic solvents, ionic liquids, supercritical fluids and supramolecular solvents. The aim is to provide a more specific reference for realizing the green and efficient extraction of polyphenolic compounds from edible oils, as well as another possibility for the future research trend of green extraction technology.

5.
Food Funct ; 14(14): 6624-6635, 2023 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-37395469

RESUMEN

Polyphenols could inhibit the freezing-induced denaturation of myosin, and affect its nutritional and functional properties, which have rarely been studied to date. Therefore, the effects of interactions between polyphenols and myosin after freezing on myosin gel and digestive properties were investigated using low field NMR, a texture analyzer, a dynamic rheometer, ultraviolet-visible spectra, scanning electron microscopy, LC-MS/MS, an automatic amino acid analyzer, etc. Hesperetin (HE), dihydroquercetin (DI), salidroside (SA), and mangiferin (MA) increased the water-holding capacity, non-flowable water content, gel strength, texture, storage modulus, and fractal dimensions of the myosin gel, while modifying its leading force. The results of scanning electron microscopy revealed that the surfaces of polyphenol groups were relatively smoother than those of the control group. Meanwhile, the four types of polyphenols under study significantly improved the gastric and gastrointestinal digestibility of myosin. Furthermore, they significantly increased the contents of essential, flavor, and total free amino acids, as well as the unique peptide numbers in myosin digestion products. This work provides reliable guidance for polyphenols to improve protein function and nutritional properties.


Asunto(s)
Penaeidae , Polifenoles , Animales , Polifenoles/química , Congelación , Penaeidae/metabolismo , Cromatografía Liquida , Espectrometría de Masas en Tándem , Miosinas/química , Agua
6.
J Food Sci ; 88(7): 3007-3021, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37248780

RESUMEN

The synergistic effects of the combination of ultrahigh pressure (UHP) with allicin on the gel properties, flavor characteristics, and myosin structure of scallops were investigated. The results indicated that chewiness reached maximum, uniform, and dense microstructures at B-300 MPa, and scallops with favorable gel properties. In addition, the electronic nose and tongue could clearly distinguish the olfactory and gustatory properties of scallops, and the interaction of UHP and allicin increased the variety of volatile compounds in scallops, which mainly included 1-hydroxy-2-propanone, 1-hexenal, 2-butanone-D, and 1-octen-3-ol. The main performance was fruit aroma and a plantlike aroma and mushroomlike odor. UHP and allicin changed the microenvironment of tryptophan residues, and allicin formed larger aggregates by forming disulfides with myosin. The sodium dodecyl sulfate-polyacrylamide gel electrophoresis results could show that myosin had low degradation in B-300 MPa. Thus, comprehensively viewed, UHP and allicin play a role in gel formation of myosin from obturator muscle at 300 MPa, whereas allicin and myosin form disulfides as the main factor of myosin gelation. PRACTICAL APPLICATION: To enhance the diversity of scallop preparation methods and improve the quality of the obtained product, UHP and allicin treatment result in scallops with satisfactory chewiness and flavor, which provides application prospects for scallop processing.


Asunto(s)
Pectinidae , Animales , Pectinidae/química , Miosinas/metabolismo , Músculo Esquelético/metabolismo , Disulfuros
7.
Ultrason Sonochem ; 95: 106406, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37088028

RESUMEN

The effect of oat ß-glucan (OG) combined with ultrasound treatment on the gelation properties of silver carp surimi with different salt contents was investigated. The results demonstrated that the gelation properties of surimi gels at high salt concentration were superior than those at low salt level. The addition of OG or ultrasound treatment could significantly enhance the texture properties, gel strength and water holding capacity (WHC) of gel samples, regardless of salt contents. The ultrasound treatment improved the whiteness of surimi gels, whereas the OG addition slightly declined the whiteness. Both OG addition and ultrasound treatment markedly reduced the total sulfhydryl content (total SH) and strengthened the hydrophobic interactions, forming the more uniform and denser gel network structures, hence more water was captured in network structures and became immobilized. Moreover, the combined treatment of OG and ultrasound showed synergic action on the gelation properties of surimi, and the gel strength and WHC of low-salt surimi gel treated by the combination of OG and ultrasound were even superior than that of high-salt gel without OG by traditional heating.


Asunto(s)
Carpas , Proteínas de Peces , Animales , Proteínas de Peces/química , Manipulación de Alimentos/métodos , Productos Pesqueros/análisis , Geles/química , Agua
8.
Food Chem ; 417: 135821, 2023 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-36934711

RESUMEN

The effects of different amount (0-12%) of chickpea protein-stabilized Pickering emulsion (CPE) on the gelling properties, intermolecular interactions, microstructure, and physicochemical stability of hairtail fish myosin gels were investigated. The myosin gel with 6%-9% CPE demonstrated significantly higher viscoelasticity, gel strength, hardness, water-holding capacity and whiteness, compared to the control (P < 0.05). In addition, Raman spectroscopy showed that CPE changed the microenvironment of the myosin, which promoted the changes in protein secondary structures, disulfide bond conformation and the local environments of the composite gels. The addition of 6%-9% CPE also enhanced the disulfide bond and hydrophobic interaction of myosin gels which induced more compact gel network structures. Furthermore, CPE improved the lipid oxidative stability and freeze-thaw stability of myosin gel. The results indicated that CPE could improve the gelling properties of myosin, making it a potential new additive and lipid substitute for the development of new emulsion gel products.


Asunto(s)
Cicer , Animales , Emulsiones/química , Geles/química , Miosinas , Disulfuros , Lípidos
9.
Food Chem ; 418: 135945, 2023 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-36989640

RESUMEN

Acid phosphatase (ACP) is a key enzyme that hydrolyzes inosinic acid. The mechanisms underlying the interaction between rosmarinic acid (RA) and ACP and the inhibition of the enzyme were investigated using inhibition kinetics, UV-visible and fluorescence spectroscopy, circular dichroism, and molecular docking. The results showed that RA was a reversible inhibitor of ACP and that the inhibition mechanism was uncompetitive. The ACP fluorescence was quenched by RA, and the quenching mode was static. The interaction of ACP with RA was driven by H bonds and van der Waals forces. The addition of RA increased the α-helix content and decreased the ß-sheet, ß-turn, and random coil contents in ACP, thereby altering the secondary structure of the enzyme. This study enriched our understanding of inhibitory and interaction mechanisms involving ACP and RA.


Asunto(s)
Fosfatasa Ácida , Cinamatos , Simulación del Acoplamiento Molecular , Fosfatasa Ácida/química , Cinamatos/química , Cinamatos/farmacología , Hígado , Ácido Rosmarínico
10.
J Sci Food Agric ; 103(7): 3367-3375, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36840432

RESUMEN

BACKGROUND: Polysaccharides are the most widely used additives to enhance the quality of surimi gels. Oat ß-glucan (OG), a functional polysaccharide, is known to affect the gelation characteristics of surimi. However, it has been rarely reported. Therefore, the effect of OG at different levels on gelling properties, protein conformation, and microstructures of silver carp surimi gels were investigated. RESULTS: An increase in the OG content from 0 to 1.0% significantly improved the hardness, springiness, chewiness, puncture properties, storage modulus, and loss modulus of surimi gels. Moreover, the incorporation of OG (0-1.0%) facilitated the unfolding of proteins, resulting in the conformational transformation from α-helix to ß-sheet and ß-turn. Consequently, surimi-OG gels displayed a denser network structure with smaller and more uniform voids. Furthermore, partial free water in the gel network was converted into immobile water, increasing the water-holding capacity. However, a further increase in the OG concentration (1.0-2.0%) resulted in a looser and more uneven network structure with large and numerous cavities. In addition, the whiteness of composite gels decreased with increasing content of OG. CONCLUSION: The addition of 1.0% OG dramatically improved the gelation performance of silver carp surimi, providing a theoretical foundation for the exploitation and manufacture of functional surimi products. © 2023 Society of Chemical Industry.


Asunto(s)
Carpas , Proteínas de Peces , Animales , Proteínas de Peces/química , Manipulación de Alimentos/métodos , Geles/química , Conformación Proteica , Agua , Productos Pesqueros/análisis
11.
J Sci Food Agric ; 103(9): 4458-4469, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-36823492

RESUMEN

BACKGROUND: The rinsing process in the production of surimi can cause the loss of some important nutrients. To investigate the differences in nutritional properties between rinsed surimi (RS) and unrinsed surimi (US), this study compared the elemental composition, amino acid composition, fatty acid composition, proteomics, and an immunosuppression mouse model of surimi before and after rinsing, and analyzed the nutritional and immunological properties of RS and US. RESULTS: The results showed that the protein, fat, and ash contents of RS were decreased compared with those of US; specifically, the contents of essential amino acids, semi-essential amino acids, non-essential amino acids, saturated fatty acids, monounsaturated fatty acids, and polyunsaturated fatty acids were decreased. In the non-labeled quantitative proteomics analysis, three high-abundance quantifiable protein contents and 68 low-abundance quantifiable protein contents were found in RS (P-values < 0.05, ratio > 2). Immune function experiments in mice revealed that both RS and US contributed to the recovery of immunity in immunocompromised mice. The effect of US was better than that of RS. CONCLUSION: The rinsing process in surimi processing leads to the loss of nutrients in surimi. US promotes the recovery of immunity in immunocompromised mice more effectively than RS. © 2023 Society of Chemical Industry.


Asunto(s)
Ácidos Grasos Insaturados , Peces , Animales , Ratones , Ácidos Grasos/análisis , Proteínas , Aminoácidos , Nutrientes/análisis , Ciclofosfamida , Geles/química
12.
Food Funct ; 14(1): 160-170, 2023 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-36477011

RESUMEN

We identified novel antioxidant peptides from Pacific saury (Cololabis saira). Enzymatic hydrolysates were isolated, purified, and identified by ultrafiltration, gel chromatography, reverse phase high-performance liquid chromatography (RP-HPLC), and matrix-assisted laser desorption/ionization-time of flight (MALDI-TOF) mass spectrometry (MS). Twenty putative peptides were identified from five components of HPLC, among which sixteen peptides were predicted to have good water solubility and non-toxicity by online tools. Fifteen peptides were successfully docked with myeloperoxidase, and we observed that Arg31, Arg323, and Lys505 played a key role in the antioxidant mechanism, with van der Waals forces and conventional hydrogen bonds as important interaction forces. Six identified peptides with lower CDOCKER energy values were synthesized to verify the antioxidant activity, and the results showed that the synthetic peptide QQAAGDKIMK displayed the strongest 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging rate (31.05 ± 0.27%) and reducing power (0.29 ± 0.01). The synthetic peptide KDEPDQASSK at a concentration of 300 µg mL-1 exhibited the strongest protective effects on H2O2-induced oxidative damage of HEK-293 cells, with cell viability and ROS level of 0.38 ± 0.03 and 0.08 ± 0.01, respectively.


Asunto(s)
Antioxidantes , Peróxido de Hidrógeno , Humanos , Antioxidantes/química , Peróxido de Hidrógeno/toxicidad , Simulación del Acoplamiento Molecular , Células HEK293 , Péptidos/química , Estrés Oxidativo
13.
Food Chem ; 402: 134325, 2023 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-36174352

RESUMEN

Electronic nose (E-nose), electronic tongue (E-tongue) and colorimeter combined with data fusion strategy and different machine learning algorithms (artificial neural network, ANN; extreme gradient boosting, XGBoost; random forest regression, RFR; support vector regression, SVR) were applied to quantitatively assess and predict the freshness of horse mackerel (Trachurus japonicus) during the 90-day frozen storage. The results showed that the fusion data of the E-nose, E-tongue and colorimeter could contain more information (with a total variance contribution rate of 94.734 %) than that of the independent one. ANN, RFR and XGBoost showed good performance in predicting biochemical indexes with the RP2 (the square correlation coefficient of the Test set) ≥ 0.929, 0.936, 0.888, respectively, while SVR models showed a bad performance (RP2 ≤ 0.835). In addition, among the established quantitative models, the RFR model had the best prediction effect on K value (freshness index) with Rp2 of 0.936, ANN model had the highest fitting degree in predicting carbonyl content (protein oxidation degree) with Rp2 of 0.978, XGBoost model had the best performance in predicting the TBA value (lipid oxidation degree) with Rp2 of 0.994, RFR model was the best strategy for predicting Ca2+-ATPase activity (protein denaturation degree) with Rp2 of 0.969. The results demonstrated that the freshness of frozen fish can be effectively evaluated and predicted by the combination of electronic sensor fusion signals.


Asunto(s)
Nariz Electrónica , Perciformes , Animales , Peces , Lengua , Lípidos , Adenosina Trifosfatasas
14.
Food Chem ; 404(Pt A): 134530, 2023 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-36223669

RESUMEN

Repeated freezing and thawing due to temperature fluctuations irreversibly damage the muscle tissue cells of fish, thereby reducing their economic quality. In this study, the effects of ultrasound-assisted immersed freezing (UIF) technology on the changes in the quality of large yellow croaker (Pseudosciaena crocea) subjected to 0 to 5 freeze-thaw cycles were investigated. The results showed that the quality deterioration inevitably occurred after repeated freeze-thaw cycles. However, UIF significantly delayed the changes in the water holding capacity (WHC), immobilized water content, color and texture properties of fish. Compared to the control group (air freezing, AF), the thawing loss in the UIF group was reduced by 1.09 % to 4.54 % (P < 0.05), the centrifuging loss was reduced by 0.39 % to 1.86 % (P < 0.05), the migration of immobilized water content was reduced by 4 % to 5 % (P < 0.05). Moreover, SEM and LM images illustrated that the microstructures of muscle tissue in UIF group were more uniform and denser than that of the AF group after freeze-thaw cycles, and that the ice crystal size from UIF group were smaller and more regular than that of AF group. Furthermore, UIF did not caused more excessive protein oxidation of myofibrillary protein, but significantly delayed the lipid oxidation of fish muscle. The results indicated that UIF technology effectively inhibits the deterioration of fish quality affected by multiple freeze-thaw cycles, thus providing a reference for controlling the deterioration of aquatic products due to temperature fluctuations in the industry.


Asunto(s)
Perciformes , Animales , Congelación , Agua/química , Músculos , Proteínas
15.
Front Nutr ; 9: 1046945, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36330132

RESUMEN

A monolayer Caco-2 cell model was established to explore the effects of sea bass sausage digestive juice containing phosphate on calcium ion transport. Differential proteins of Caco-2 cells treated with fish sausage juice were detected and analyzed by gene ontology (GO) functional annotation and kyoto encyclopedia of genes and genomes (KEGG) pathway analyses. Results revealed that after treatment with 0.23 mg/mL digestive juice of perch sausage in vitro, Caco-2 cell viability was the highest at 72 h (99.84%). Additionally, 0.23 mg/mL digestive juice of perch sausage in vitro significantly increased calcium ion transport. The transfer volume was 1.396 µg/well. Fish sausages containing phosphate significantly affected the protein expression levels of Caco-2 cells. Two hundred one differential proteins were detected, including 114 up-regulated and 87 down-regulated proteins. The main differential proteins included P02795, Q9P0W0, Q96PU5, Q9GZT9 and Q5EBL8. The adjustment ratios of the fish sausage group were 0.7485, 1.373, 1.2535, 0.6775, and 0.809, respectively. The pathway analysis showed that phosphate affected calcium ion absorption and transport through the P02795 enrichment pathway. The fish sausage group showed that the immune-related functions of cells were affected. This study expounds the effects of water-retaining agents on the nutritional quality of aquatic products and provides theoretical support for the research and application of surimi products.

16.
Crit Rev Food Sci Nutr ; : 1-13, 2022 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-36102134

RESUMEN

Color is an essential criterion for assessing the freshness, quality, and acceptability of red meat and certain fish with red muscle. Myoglobin (Mb), one of the significant pigment substances, is the uppermost reason to keep the color of red meat. Their oxidation and browning are easy to occur throughout the storage and processing period. Natural antioxidants are substances with antioxidant activity extracted from plants, such as plant polyphenols. Consumers prefer natural antioxidants due to safety concerns and limitations on the use of synthetic antioxidants. In recent years, plant polyphenols have been widely used as antioxidants to slow down the deterioration of product quality due to oxidation. As natural antioxidants, it is necessary to strengthen the researches on the antioxidant mechanism of plant polyphenols to solve the discoloration of red meat and certain fish. A fundamental review of the relationship between Mb oxidation and color stability is discussed. The inhibiting mechanisms of polyphenols on lipid and Mb oxidation are presented and investigated. Meanwhile, this review comprehensively outlines applications of plant polyphenols in improving color stability. This will provide reference and theoretical support for the rational application of plant polyphenols in green meat processing.

17.
Food Res Int ; 159: 111612, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35940806

RESUMEN

To make better use of cod head (Gadus macrocephalus), a by-product of fish processing, the effects of ultrasound pretreatment on the enzymatic properties and volatile compounds of cod head enzymatic hydrolysates were investigated. The results demonstrated that ultrasound pretreatment at 150-600 W had a positive effect cod head enzymatic hydrolysates. The soluble peptides content of the enzymatic hydrolysates reached the highest value of 5.31 ± 0.16 mg/mL at the ultrasound power level of 450 W, and the content of peptide molecules < 3-kDa was up to 93.96%. The type and relative content of volatile compounds, especially aldehydes, alcohols, and ketones, also increased with the increase the ultrasound power. The electronic tongue results indicated that ultrasound pretreatment reduced bitterness and astringency. The electronic nose results indicated that the hydrogen- and alkane-containing odor components in the hydrolyzed liquid after ultrasound pretreatment differed significantly from conventional enzymatic hydrolysates. In conclusion, ultrasound pretreatment may be applicable as a suitable technology to assist enzymatic hydrolysis of the cod head, and as such, promote the utilization of fish by-products.


Asunto(s)
Gadiformes , Animales , Nariz Electrónica , Productos Pesqueros , Hidrólisis , Péptidos/química
18.
Food Chem ; 397: 133766, 2022 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-35908465

RESUMEN

The potential effects of yeast ß-glucan (YG) on heat-induced gel properties, microstructure and flavor adsorption capacity of fish myosin at different NaCl concentrations were investigated in this study. The incorporation of YG significantly improved the texture properties, gel strength, water holding capacity (WHC), storage modulus and loss modulus of myosin gels, especially at a high salt level, whereas the whiteness declined. Furthermore, myosin gels containing YG displayed a more compact and ordered three-dimensional network structure, accompanied by the increasing immobilization of water in gels. The binding abilities of gels to selected flavor compounds at high salt content were inferior to those at the low salt content. Regardless of the salt level, YG addition boosted the flavor binding capacity of gels, which might be attributed to the unfolding of the protein conformation by exposing more flavor-binding sites, as well as the porous sponge structure of YG with unique adsorption capacity.


Asunto(s)
beta-Glucanos , Adsorción , Animales , Peces , Geles/química , Miosinas , Saccharomyces cerevisiae , Agua/química
19.
J Food Sci ; 87(9): 3900-3912, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35894520

RESUMEN

In the present study, egg white protein (EWP) and myofibrillar protein (MP) were mixed in different ratios (0/100, 10/90, 20/80, 30/70, 40/60, 50/50, 100/0 for EWP/MP) and subjected to unheated, preheated (40°C/30 min), two-step heated (40°C/30 min, 90°C/20 min), and one-step heated (90°C/20 min) treatments to study the thermal aggregation of the two proteins. Their aggregation behavior was characterized by turbidity, active sulfhydryl, degree of protein cross-linking, protein characteristic spectra, and microscopic morphology. The results indicated that for the mixed protein system composed of EWP and MP, the mixed protein aggregation volume was larger and regular at an EWP/MP of 30/70, when the degree of cross-linking was best. When the ratio of EWP/MP was 50/50, the aggregate-protein interaction was dominant, and the excess EWP acted as a barrier to cross-linking and wrapped around the surface of the aggregates to form larger aggregates. Comparing the two-step heated and one-step heated conditions, the former is superior. PRACTICAL APPLICATION: The combination of egg white protein and myofibrillar protein can provide a theoretical reference for the protein content in surimi products, and moderate addition has an enhancing effect on surimi protein cross-linking and promotes gel formation. Excessive addition will form aggregates outside the egg white protein wrapping phenomenon, and the quality of surimi gel products will be affected.


Asunto(s)
Perciformes , Agregado de Proteínas , Animales , Proteínas del Huevo , Calor
20.
Int J Biol Macromol ; 217: 701-713, 2022 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-35843403

RESUMEN

The denaturation of proteins (particularly myosin) due to freezing can lead to the deterioration of Penaeus vannamei. The purpose of this study was to verify the antifreeze protective effects of polyphenols screened by a molecular docking technique, and to explore their interactions with myosin after freezing treatment. It was found that the screened polyphenols could significantly increase the freezing rate and unfreezable water content of shrimp paste. The results of fluorescence spectra indicated that the hesperetin to myosin quenching process included both dynamic and static quenching, and it was primarily bound to myosin through hydrophobic interactions; The quenching of myosin by both dihydroquercetin and mangiferin was static quenching, and they were bound to myosin mainly by hydrogen bonds and van der Waals forces; All three of these polyphenols had only one binding site on myosin. Surface hydrophobicity indicated that all four polyphenols were engaged in non-covalent binding (hydrophobic interactions) with myosin. Infrared spectra demonstrated that the addition of these four polyphenols significantly increased the α-helix content of myosin. They also reduced the myosin particle size, zeta potential, and protein degeneration degree. Scanning electron microscopy revealed that the four polyphenols reduced the degree of aggregation, while more uniformly distributing the myosin particles. These observations provide a basis for the screening of polyphenols and further research into the protective mechanism of polyphenols on frozen myosin.


Asunto(s)
Penaeidae , Polifenoles , Animales , Congelación , Simulación del Acoplamiento Molecular , Miosinas , Penaeidae/química , Polifenoles/química , Polifenoles/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA