Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 730
1.
Sci Rep ; 14(1): 7638, 2024 04 01.
Article En | MEDLINE | ID: mdl-38561452

Hypomyelinating leukodystrophy (HLD) is a rare genetic heterogeneous disease that can affect myelin development in the central nervous system. This study aims to analyze the clinical phenotype and genetic function of a family with HLD-7 caused by POLR3A mutation. The proband (IV6) in this family mainly showed progressive cognitive decline, dentin dysplasia, and hypogonadotropic hypogonadism. Her three old brothers (IV1, IV2, and IV4) also had different degrees of ataxia, dystonia, or dysarthria besides the aforementioned manifestations. Their brain magnetic resonance imaging showed bilateral periventricular white matter atrophy, brain atrophy, and corpus callosum atrophy and thinning. The proband and her two living brothers (IV2 and IV4) were detected to carry a homozygous mutation of the POLR3A (NM_007055.4) gene c. 2300G > T (p.Cys767Phe), and her consanguineous married parents (III1 and III2) were p.Cys767Phe heterozygous carriers. In the constructed POLR3A wild-type and p.Cys767Phe mutant cells, it was seen that overexpression of wild-type POLR3A protein significantly enhanced Pol III transcription of 5S rRNA and tRNA Leu-CAA. However, although the mutant POLR3A protein overexpression was increased compared to the wild-type protein overexpression, it did not show the expected further enhancement of Pol III function. On the contrary, Pol III transcription function was frustrated (POLR3A, BC200, and tRNA Leu-CAA expression decreased), and MBP and 18S rRNA expressions were decreased. This study indicates that the POLR3A p.Cys767Phe variant caused increased expression of mutated POLR3A protein and abnormal expression of Pol III transcripts, and the mutant POLR3A protein function was abnormal.


Hereditary Central Nervous System Demyelinating Diseases , Male , Female , Humans , Hereditary Central Nervous System Demyelinating Diseases/genetics , Mutation , Phenotype , Atrophy , RNA, Transfer , RNA Polymerase III/genetics , RNA Polymerase III/metabolism
2.
Cell Death Discov ; 10(1): 190, 2024 Apr 23.
Article En | MEDLINE | ID: mdl-38653740

Pancreatic cancer is one of the most fatal cancers in the world. A growing number of studies have begun to demonstrate that mitochondria play a key role in tumorigenesis. Our previous study reveals that NDUFS2 (NADH: ubiquinone oxidoreductase core subunit S2), a core subunit of the mitochondrial respiratory chain complex I, is upregulated in Pancreatic adenocarcinoma (PAAD). However, its role in the development of PAAD remains unknown. Here, we showed that NDUFS2 played a critical role in the survival, proliferation and migration of pancreatic cancer cells by inhibiting mitochondrial cell death. Additionally, protein mass spectrometry indicated that the NDUFS2 was interacted with a deubiquitinase, OTUB1. Overexpression of OTUB1 increased NDUFS2 expression at the protein level, while knockdown of OTUB1 restored the effects in vitro. Accordingly, overexpression and knockdown of OTUB1 phenocopied those of NDUFS2 in pancreatic cancer cells, respectively. Mechanically, NDUFS2 was deubiquitinated by OTUB1 via K48-linked polyubiquitin chains, resulted in an elevated protein stability of NDUFS2. Moreover, the growth of OTUB1-overexpressed pancreatic cancer xenograft tumor was promoted in vivo, while the OTUB1-silenced pancreatic cancer xenograft tumor was inhibited in vivo. In conclusion, we revealed that OTUB1 increased the stability of NDUFS2 in PAAD by deubiquitylation and this axis plays a pivotal role in pancreatic cancer tumorigenesis and development.

3.
Exp Cell Res ; 437(1): 114007, 2024 Apr 01.
Article En | MEDLINE | ID: mdl-38499142

Gastric cancer metastasis is a major cause of poor prognosis. Our previous research showed that methionine restriction (MR) lowers the invasiveness and motility of gastric carcinoma. In this study, we investigated the particular mechanisms of MR on gastric carcinoma metastasis. In vitro, gastric carcinoma cells (AGS, SNU-5, MKN7, KATO III, SNU-1, and MKN45) were grown in an MR medium for 24 h. In vivo, BALB/c mice were given a methionine-free (Met-) diet. Transwell assays were used to investigate cell invasion and migration. The amounts of Krüppel like factor 10 (KLF10) and cystathionine ß-synthase (CBS) were determined using quantitative real-time PCR and Western blot. To determine the relationship between KLF10 and CBS, chromatin immunoprecipitation and a dual-luciferase reporter experiment were used. Hematoxylin-eosin staining was used to detect lung metastasis. Liquid chromatography-mass spectrometry was used to determine cystathionine content. MR therapy had varying effects on the invasion and migration of gastric carcinoma cells AGS, SNU-5, MKN7, KATO III, SNU-1, and MKN45. KLF10 was highly expressed in AGS cells but poorly expressed in KATO III cells. KLF10 improved MR's ability to prevent gastric carcinoma cell invasion and migration. In addition, KLF10 may interact with CBS, facilitating transcription. Further detection revealed that inhibiting the KLF10/CBS-mediated trans-sulfur pathway lowered Met-'s inhibitory effect on lung metastasis development. KLF10 transcription activated CBS, accelerated the trans-sulfur pathway, and increased gastric carcinoma cells' susceptibility to MR.


Carcinoma , Lung Neoplasms , Stomach Neoplasms , Mice , Animals , Methionine/metabolism , Cystathionine beta-Synthase/genetics , Cystathionine beta-Synthase/metabolism , Stomach Neoplasms/pathology , Racemethionine , Sulfur , Lung Neoplasms/genetics , Kruppel-Like Transcription Factors/genetics , Kruppel-Like Transcription Factors/metabolism , Early Growth Response Transcription Factors/metabolism
4.
J Gastrointestin Liver Dis ; 33(1): 44-56, 2024 Mar 30.
Article En | MEDLINE | ID: mdl-38554427

BACKGROUND AND AIMS: The incidence and mortality of hepatocellular carcinoma (HCC) are increasing. It is urgent to develop more effective HCC biomarkers for diagnosis and treatment. This project intends to verify the expression of enhancer of zeste 1 polycomb repressive complex 2 subunit (EZH1) and its mechanism in HCC. METHODS: This study integrates global microarray and high-throughput sequencing datasets, combined with internal immunohistochemistry, to analyze the expression and prognostic value of EZH1 in HCC. Functional enrichment analysis was conducted to investigate transcriptional targets, which were achieved by intersecting HCC over-expressed genes, EZH1 co-expressed genes and putative transcriptional targets. The relationship between EZH1 and anticancer drugs was detected by drug sensitivity analysis. RESULTS: In this study, 84 datasets from 40 platforms (3,926 HCC samples and 3,428 non-cancerous liver tissues) were included to show the high expression of EZH1 in HCC. Immunohistochemistry with 159 HCC samples and 62 non-HCC samples confirmed the high expression level. HCC patients with high EZH1 expression had worse survival prognoses. Gene ontology and Reactome analysis revealed that metabolism-related pathways, including autophagy, are critical for HCC. Interestingly, as one of the EZH1 potential transcriptional targets, autophagy-related 7 (ATG7) appeared in the above pathways. ATG7 was positively correlated with EZH1, upregulated in HCC, and mediated poor prognosis. Upregulation of EZH1 was found to be in contact with HCC anti-tumor drug resistance. CONCLUSIONS: The upregulation of EZH1 expression can promote the occurrence of HCC and lead to poor clinical progression and drug resistance; these effects may be mediated by regulating ATG7.


Carcinoma, Hepatocellular , Liver Neoplasms , Humans , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/pathology , Liver Neoplasms/pathology , Polycomb Repressive Complex 2/genetics , Polycomb Repressive Complex 2/metabolism , Up-Regulation , Clinical Relevance , Prognosis , Gene Expression Regulation, Neoplastic
5.
Mol Neurobiol ; 2024 Mar 23.
Article En | MEDLINE | ID: mdl-38520610

NUS1 encodes the Nogo-B receptor, a critical regulator for unfolded protein reaction (UPR) signaling. Although several loss-of-function variants of NUS1 have been identified in patients with developmental and epileptic encephalopathy (DEE), the role of the NUS1 variant in Lennox-Gastaut syndrome (LGS), a severe child-onset DEE, remains unknown. In this study, we identified two de novo variants of NUS1, a missense variant (c.868 C > T/p.R290C) and a splice site variant (c.792-2 A > G), in two unrelated LGS patients using trio-based whole-exome sequencing performed in a cohort of 165 LGS patients. Both variants were absent in the gnomAD population and showed a significantly higher observed number of variants than expected genome-wide. The R290C variant was predicted to damage NUS1 and decrease its protein stability. The c.792-2 A > G variant caused premature termination of the protein. Knockdown of NUS1 activated the UPR pathway, resulting in apoptosis of HEK293T cells. Supplementing cells with expression of wild-type NUS1, but not the mutant (R290C), rescued UPR activation and apoptosis in NUS1 knockdown cells. Compared to wild-type Drosophila, seizure-like behaviors and excitability in projection neurons were significantly increased in Tango14 (homolog of human NUS1) knockdown and Tango14R290C/+ knock-in Drosophila. Additionally, abnormal development and a small body size were observed in both mutants. Activated UPR signaling was also detected in both mutants. Thus, NUS1 is a causative gene for LGS with dominant inheritance. The pathogenicity of these variants is related to the UPR signaling activation, which may be a common pathogenic mechanism of DEE.

6.
ACS Omega ; 9(10): 11356-11365, 2024 Mar 12.
Article En | MEDLINE | ID: mdl-38496926

An efficient protocol for photocatalytic degradation of organic dyes and antibiotics has been successfully established via MOF-derived (MOF = metal-organic framework) Ni, Co-embedded N-doped bimetallic porous carbon nanocomposites (NiCo/NC). Such a NiCo/NC nanocomposite features well-distributed structures, suitable specific surface areas, and more active sites determined by various characterization analyses. The catalyst exhibits higher photocatalytic performance and stability toward the liquid-phase degradation of methylene blue (MB) under visible light irradiation for 60 min, after the adsorption-desorption equilibrium and the thorough degradation into H2O and CO2. Radical quenching experiments further confirmed the dominant effect of electron holes h+ and superoxide radical anions ·O2- for the MB photodegradation process. NiCo/NC was also appropriate for the degradation of Rhodamine B, methyl orange, tetracycline hydrochloride, and norfloxacin. Moreover, NiCo/NC is robust, and its photocatalytic activity is basically maintained after 8 cycles. This work is expected to provide additional information for the design of MOF-derived carbon material with more excellent properties and lay the foundation for further industrial applications.

7.
Clin Transl Oncol ; 26(6): 1519-1531, 2024 Jun.
Article En | MEDLINE | ID: mdl-38206516

BACKGROUND: Although it has been shown that cyclin dependent kinase inhibitor 2A (CDKN2A) plays a significant role in a number of malignancies, its clinicopathological value and function in small cell lung cancer (SCLC) is unclear and warrants additional research. METHODS: The clinical significance of CDKN2A expression in SCLC was examined by multiple methods, including comprehensive integration of mRNA level by high throughput data, Kaplan-Meier survival analysis for prognostic value, and validation of its protein expression using in-house immunohistochemistry. RESULTS: The expression of CDKN2A mRNA in 357 cases of SCLC was evidently higher than that in the control group (n = 525) combing the data from 20 research centers worldwide. The standardized mean difference (SMD) was 3.07, and the area under the curve (AUC) of summary receiver operating characteristic curve (sROC) was 0.97 for the overexpression of CDKN2A. ACC, COAD, KICH, KIRC, PCPG, PRAD, UCEC, UVM patients with higher CDKN2A expression had considerably worse overall survival rates than those with lower CDKN2A expression with the hazard ratio (HR) > 1. CONCLUSION: CDKN2A upregulation extensively enhances the carcinogenesis and progression of SCLC.


Biomarkers, Tumor , Cyclin-Dependent Kinase Inhibitor p16 , Lung Neoplasms , Small Cell Lung Carcinoma , Humans , Lung Neoplasms/pathology , Lung Neoplasms/metabolism , Lung Neoplasms/mortality , Lung Neoplasms/genetics , Small Cell Lung Carcinoma/pathology , Small Cell Lung Carcinoma/metabolism , Small Cell Lung Carcinoma/genetics , Small Cell Lung Carcinoma/mortality , Cyclin-Dependent Kinase Inhibitor p16/metabolism , Prognosis , Biomarkers, Tumor/metabolism , Biomarkers, Tumor/genetics , Female , Male , Kaplan-Meier Estimate , ROC Curve , RNA, Messenger/genetics , RNA, Messenger/metabolism , Middle Aged , Survival Rate , Prospective Studies , Aged , Case-Control Studies , Clinical Relevance
8.
J Cancer ; 15(1): 126-139, 2024.
Article En | MEDLINE | ID: mdl-38164289

Background: KIAA1429, a member of the RNA methyltransferase complex, is involved in cancer progression; however, the clinical significance and underlying mechanism of KIAA1429 in osteosarcoma (OS) remains to be reported. Methods: We evaluated the clinical significance of KIAA1429 in OS by performing RT-qPCR, microarray, and RNA sequencing and using published data as a reference. Two KIAA1429-targeting siRNA constructs were transfected into SW1353 cells. CCK-8 assay, colony formation assays, flow cytometry and the xenograft mouse model were conducted to investigate the biological function of KIAA1429 in OS. Results: The mRNA expression of KIAA1429 was markedly upregulated in 250 OS samples as compared to that in 71 non-cancer samples (standardized mean difference = 0.67). Summary receiver operating characteristic curve analysis revealed that KIAA1429 exhibited reliable diagnostic capacity to differentiate OS samples from non-cancer samples (area under the curve = 0.83). Further, survival analysis indicated that KIAA1429 overexpression was associated with shorter overall survival time. Knocking down KIAA1429 reduced m6A methylation levels, inhibited proliferation, prevented the growth of tumors in vivo and accelerated apoptosis of OS cells. In total, 395 KIAA1429-related genes were identified among co-expressed genes and differentially expressed genes, which were enriched in the cell cycle pathway. Protein-protein interaction network analysis showed that CDK1, CCNA2, and CCNB1 were KIAA1429-related genes, serving as major network hubs in OS. Conclusions: Our findings indicate that KIAA1429 plays an oncogenic role in OS and potentially facilitates OS progression via a mechanism that involves regulating CDK1, CCNA2, and CCNB1.

9.
Biol Chem ; 405(4): 257-265, 2024 Apr 25.
Article En | MEDLINE | ID: mdl-37943731

The prevention and treatment of gastric cancer has been the focus and difficulty of medical research. We aimed to explore the mechanism of inhibiting migration and invasion of gastric cancer cells by methionine restriction (MR). The human gastric cancer cell lines AGS and MKN45 cultured with complete medium (CM) or medium without methionine were used for in vitro experiments. MKN45 cells were injected tail vein into BALB/c nude mice and then fed with normal diet or methionine diet for in vivo experiments. MR treatment decreased cell migration and invasion, increased E-cadherin expression, decreased N-cadherin and p-p65 expressions, and inhibited nuclear p65 translocation of AGS and MKN45 cells when compared with CM group. MR treatment increased IκBα protein expression and protein stability, and decreased IκBα protein ubiquitination level and TRIM47 expression. TRIM47 interacted with IκBα protein, and overexpression of TRIM47 reversed the regulatory effects of MR. TRIM47 promoted lung metastasis formation and partially attenuated the effect of MR on metastasis formation in vivo compared to normal diet group mice. MR reduces TRIM47 expression, leads to the degradation of IκBα, and then inhibits the translocation of nuclear p65 and the migration and invasion of gastric cancer cells.


Stomach Neoplasms , Animals , Humans , Mice , Cell Line, Tumor , Cell Movement , Cell Proliferation , Gene Expression Regulation, Neoplastic , Methionine/metabolism , Methionine/pharmacology , Mice, Nude , Neoplasm Proteins/metabolism , NF-KappaB Inhibitor alpha/metabolism , NF-KappaB Inhibitor alpha/pharmacology , Nuclear Proteins/metabolism , Racemethionine/metabolism , Racemethionine/pharmacology , Stomach Neoplasms/metabolism , Tripartite Motif Proteins/metabolism
10.
Seizure ; 116: 93-99, 2024 Mar.
Article En | MEDLINE | ID: mdl-37643945

OBJECTIVES: Variants in NEXMIF had been reported associated with intellectual disability (ID) without epilepsy or developmental epileptic encephalopathy (DEE). It is unkown whether NEXMIF variants are associated with epilepsy without ID. This study aims to explore the phenotypic spectrum of NEXMIF and the genotype-phenotype correlations. MATERIALS AND METHODS: Trio-based whole-exome sequencing was performed in patients with epilepsy. Previously reported NEXMIF variants were systematically reviewed to analyze the genotype-phenotype correlations. RESULTS: Six variants were identified in seven unrelated cases with epilepsy, including two de novo null variants and four hemizygous missense variants. The two de novo variants were absent in all populations of gnomAD and four hemizygous missense variants were absent in male controls of gnomAD. The two patients with de novo null variants exhibited severe developmental epileptic encephalopathy. While, the patients with hemizygous missense variants had mild focal epilepsy with favorable outcome. Analysis of previously reported cases revealed that males with missense variants presented significantly higher percentage of normal intellectual development and later onset age of seizure than those with null variants, indicating a genotype-phenotype correlation. CONCLUSION: This study suggested that NEXMIF variants were potentially associated with pure epilepsy with or without intellectual disability. The spectrum of epileptic phenotypes ranged from the mild epilepsy to severe developmental epileptic encephalopathy, where the epileptic phenotypes variability are potentially associated with patients' gender and variant type.


Epilepsy, Generalized , Epilepsy , Intellectual Disability , Humans , Male , Intellectual Disability/complications , Intellectual Disability/genetics , Epilepsy/complications , Epilepsy/genetics , Seizures/complications , Epilepsy, Generalized/complications , Epilepsy, Generalized/genetics , Phenotype
11.
Clin Pharmacol Drug Dev ; 13(2): 190-196, 2024 02.
Article En | MEDLINE | ID: mdl-37691309

This study aimed to compare the pharmacokinetics and bioavailability of 2 formulations: a fixed-dose combination tablet containing allisartan isoproxil (AI) and indapamide sustained-release (SR), and a monotherapy combination of AI and indapamide SR, in healthy Chinese subjects. A monocentric, open-label, single-dose, randomized, 2-way crossover study design was implemented. A total of 38 healthy male and female volunteers were equally divided into 2 treatment sequences. The analysis of plasma concentrations was conducted using a nonstereospecific liquid chromatography/tandem mass spectrometric method. The primary pharmacokinetic parameters were calculated using a noncompartmental model. Safety assessments were performed throughout the study. For the fixed-dose combination and monotherapy combination, the mean values of EXP3174 (metabolite of AI) Cmax , AUC0-t , and AUC0-∞ were 987 and 999 ng/mL, 8059 and 7749 ng/mL h, and 8332 and 8007 ng/mL h, respectively. The corresponding values for indapamide were 27 and 32 ng/mL, 1002 and 1105 ng/mL h, and 1080 and 1172 ng/mL h. No serious adverse events were reported during the study. The combination tablet containing 240 mg of AI and 1.5 mg of indapamide SR met the bioequivalence standards. Additionally, both formulations were tolerated and had good safety profiles in the research.


Biphenyl Compounds , Imidazoles , Indapamide , Humans , Male , Female , Biological Availability , Indapamide/adverse effects , Indapamide/pharmacokinetics , Cross-Over Studies , Delayed-Action Preparations , Tablets , Volunteers , China
12.
Article Zh | WPRIM | ID: wpr-1013604

Aim To investigate the effect of quercetin on the aging model of bone marrow mesenchymal stem cells established under microgravity. Methods Using 3D gyroscope, a aging model of bone marrow mesenchymal stem cells was constructed, and after receiving quercetin and microgravity treatment, the anti-aging effect of the quercetin was evaluated by detecting related proteins and oxidation indexes. Results Compared to the control group, the expressions of age-related proteins p21, pi6, p53 and RB in the microgravity group significantly increased, while the expressions of cyclin D1 and lamin B1 significantly decreased, with statistical significance (P<0.05). In the microgravity group, mitochondrial membrane potential significantly decreased (P<0.05), ROS accumulation significantly increased (P <0.05), SOD content significantly decreased and MDA content significantly increased (P<0.05). Compared to the microgravity group, the expressions of age-related proteins p21, pi6, p53 and RB in the quercetin group significantly decreased, while the expressions of cyclin D1 and lamin B1 significantly increased, with statistical significance (P<0.05). In the quercetin group, mitochondrial membrane potential significantly increased (P<0.05), ROS accumulation significantly decreased (P<0.05), SOD content significantly increased and MDA content significantly decreased (P<0.05). Conclusions Quercetin can resist oxidation, protect mitochondrial function and normal cell cycle, thus delaying the aging of bone marrow mesenchymal stem cells induced by microgravity.

13.
JOURNAL OF RARE DISEASES ; (4): 136-143, 2024.
Article En | WPRIM | ID: wpr-1006911

Visual snow syndrome(VSS)is a visual-disturbance disease characterized by continuous flickering tiny dots in the entire visual field, sometimes with visual symptoms like photophobia or nyctalopia and non-visual symptoms such as anxiety and depression.VSS can remain stable or worsen, causing distress to patients′ visual experience and mental state. The pathological mechanism of VSS is still unclear and a hypothesis indicates a relationship between VSS and increased cortical excitability of the visual cortex. Some case reports suggest anti-seizure medications, colored filters and TMS may help eliminate symptoms, but futher studies are required to verify these treatments. This review will systematically introduce what we know about VSS so far.

14.
Eur J Med Res ; 28(1): 591, 2023 Dec 15.
Article En | MEDLINE | ID: mdl-38102653

BACKGROUND: Although great progress has been made in anti-cancer therapy, the prognosis of laryngeal squamous cell carcinoma (LSCC) patients remains unsatisfied. Quantities of studies demonstrate that glycolytic reprograming is essential for the progression of cancers, where triosephosphate isomerase 1 (TPI1) serves as a catalytic enzyme. However, the clinicopathological significance and potential biological functions of TPI1 underlying LSCC remains obscure. METHODS: We collected in-house 82 LSCC tissue specimens and 56 non-tumor tissue specimens. Tissue microarrays (TMA) and immunohistochemical (IHC) experiments were performed. External LSCC microarrays and bulk RNA sequencing data were integrated to evaluate the expression of TPI1. We used a log-rank test and the CIBERSORT algorithm to assess the prognostic value of TPI1 and its association with the LSCC microenvironment. Malignant laryngeal epithelial cells and immune-stromal cells were identified using inferCNV and CellTypist. We conducted a comprehensive analysis to elucidate the molecular functions of TPI1 in LSCC tissue and single cells using Pearson correlation analysis, high dimensional weighted gene co-expression analysis, gene set enrichment analysis, and clustered regularly interspaced short palindromic repeats (CRISPR) screen. We explored intercellular communication patterns between LSCC single cells and immune-stromal cells and predicted several therapeutic agents targeting TPI1. RESULTS: Based on the in-house TMA and IHC analysis, TPI1 protein was found to have a strong positive expression in the nucleus of LSCC cells but only weakly positive activity in the cytoplasm of normal laryngeal cells (p < 0.0001). Further confirmation of elevated TPI1 mRNA expression was obtained from external datasets, comparing 251 LSCC tissue samples to 136 non-LSCC tissue samples (standardized mean difference = 1.06). The upregulated TPI1 mRNA demonstrated a high discriminative ability between LSCC and non-LSCC tissue (area under the curve = 0.91; sensitivity = 0.87; specificity = 0.79), suggesting its potential as a predictive marker for poor prognosis (p = 0.037). Lower infiltration abundance was found for plasma cells, naïve B cells, monocytes, and neutrophils in TPI-high expression LSCC tissue. Glycolysis and cell cycle were significantly enriched pathways for both LSCC tissue and single cells, where heat shock protein family B member 1, TPI1, and enolase 1 occupied a central position. Four outgoing communication patterns and two incoming communication patterns were identified from the intercellular communication networks. TPI1 was predicted as an oncogene in LSCC, with CRISPR scores less than -1 across 71.43% of the LSCC cell lines. TPI1 was positively correlated with the half maximal inhibitory concentration of gemcitabine and cladribine. CONCLUSIONS: TPI1 is dramatically overexpressed in LSCC than in normal tissue, and the high expression of TPI1 may promote LSCC deterioration through its metabolic and non-metabolic functions. This study contributes to advancing our knowledge of LSCC pathogenesis and may have implications for the development of targeted therapies in the future.


Carcinoma, Squamous Cell , Head and Neck Neoplasms , Laryngeal Neoplasms , Humans , Squamous Cell Carcinoma of Head and Neck/genetics , RNA/genetics , Triose-Phosphate Isomerase/genetics , Triose-Phosphate Isomerase/metabolism , Immunohistochemistry , Laryngeal Neoplasms/genetics , Laryngeal Neoplasms/metabolism , Laryngeal Neoplasms/pathology , Carcinoma, Squamous Cell/genetics , Carcinoma, Squamous Cell/metabolism , Carcinoma, Squamous Cell/pathology , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Prognosis , RNA, Messenger/genetics , Head and Neck Neoplasms/genetics , Gene Expression Regulation, Neoplastic , Tumor Microenvironment
15.
Clin Pharmacol Drug Dev ; 12(11): 1051-1059, 2023 11.
Article En | MEDLINE | ID: mdl-37814929

Allisartan isoproxil (AI) is an angiotensin II type 1 receptor blocker and be converted into the active substance EXP3174 in vivo. We evaluated the drug-drug interactions of AI and an indapamide sustained-release (Ind SR) preparation, as well as the pharmacokinetic characteristics and safety of AI and Ind SR in healthy subjects. The trial was set up in 6 sequences and 3 cycles, and each cycle contained a 7-day washout period. Subjects received 3 different trial drugs (A, AI; B, Ind SR; C, AI + Ind SR) during 3 different cycles. Twenty-four subjects were enrolled in the clinical trial. Of these, 22 completed the study, 2 subjects dropped out due to adverse events (AEs). For subjects given AI alone or combined with Ind SR, the pharmacogenetic parameters Cmax and the geometric mean ratio of steady state (combined/single) of EXP3174 was 130%. The geometric mean ratio of area under the concentration-time curve over the dosing interval at steady state (combined/single use) was 144.5%. Therefore, the combination of Ind SR had an impact on the pharmacokinetics of AI. Then, the results indicated that the AI combination had no effect on the pharmacokinetics of Ind SR. Serious AEs did not occur. The AEs in this clinical trial were the same as those for AI and Ind SR. Combined administration resulted in 2 cases (2 subjects) of Grade 3 hypotension and 1 case of Grade 3 hypotension with AI alone. Considering that this trial included healthy volunteers, the risk of hypotension was expected to be manageable.


Hypotension , Indapamide , Humans , Indapamide/adverse effects , Indapamide/pharmacokinetics , Delayed-Action Preparations , Drug Interactions , Hypotension/chemically induced
16.
Mol Biotechnol ; 2023 Oct 17.
Article En | MEDLINE | ID: mdl-37847361

Integrin beta 4 (ITGB4) is a vital factor for numerous cancers. However, no reports regarding ITGB4 in small cell lung carcinoma (SCLC) have been found in the existing literature. This study systematically investigated the expression and clinical value of ITGB4 in SCLC using multi-center and large-sample (n = 963) data. The ITGB4 expression levels between SCLC and control tissues were compared using standardized mean difference and Wilcoxon rank-sum test. The clinical significance of the gene in SCLC was observed using Cox regression and Kaplan-Meier curves. ITGB4 is overexpressed in multiple cancers and represents significant value in distinguishing among cancer samples (AUC = 0.91) and predicting the prognoses (p < 0.05) of patients with different cancers. In contrast, decreased ITGB4 mRNA expression was determined in SCLC (SMD < 0), and this finding was further confirmed at protein levels using in-house specimens (p < 0.05). This decrease in expression may be attributed to the regulatory role of estrogen receptor 1. ITGB4 may participate in the progression of SCLC by affecting several signaling pathways (e.g., tumor necrosis factor signaling pathway) and a series of immune cells (e.g., dendritic cells) (p < 0.05). The gene may serve as a potential marker for predicting the disease status (AUC = 0.97) and prognoses (p < 0.05) of patients with SCLC. Collectively, ITGB4 was identified as an identification and prognosis marker associated with immune infiltration in SCLC.

17.
BMC Pregnancy Childbirth ; 23(1): 683, 2023 Sep 21.
Article En | MEDLINE | ID: mdl-37735364

BACKGROUND: Ventricular septal defect (VSD) is the most common subtype of congenital heart disease. In the present study, we aimed to determine whether chromosome aberration was associated with the occurrence of VSD and evaluate the association of VSD size, location and chromosome aberration with adverse outcomes in the Chinese fetuses. METHODS: Fetuses with VSD and comprehensive follow-up data were included and evaluated retrospectively. Medical records were used to collect epidemiological data and foetal outcomes. For VSD fetuses, conventional karyotype and microarray analysis were conducted. After adjusting confounding factors by using multivariable logistic regression analyses, the association between chromosome variations and VSD occurrence was explored. The association between defect size, location and chromosome aberrations and adverse foetal outcomes was also investigated. RESULTS: Chromosome aberration was the risk factor for VSD occurrence, raising 6.5-fold chance of developing VSD. Chromosome aberration, peri-membranous site and large defect size of VSD were significant risk factors of adverse fetal outcome. Chromosome aberrations, including pathogenic copy number variations (CNVs) and variations of uncertain significance (VUS), were both risk factors, increasing the risk of the adverse fetal outcome by 55.9 times and 6.7 times, respectively. The peri-membranous site would increase 5.3-fold risk and defects larger than 5 mm would increase the 7.1-fold risk for poor fetal outcome. CONCLUSIONS: The current investigation revealed that chromosomal abnormalities, large defects, and the peri-membranous site were all risk factors for poor fetal outcomes. Our study also indicated that chromosome aberration was one of risk factors for the VSD occurrence.


DNA Copy Number Variations , Heart Septal Defects, Ventricular , Humans , Retrospective Studies , Risk Factors , Fetus , Heart Septal Defects, Ventricular/epidemiology , Heart Septal Defects, Ventricular/genetics , Prognosis , Chromosome Aberrations , Factor Analysis, Statistical
18.
PeerJ ; 11: e15598, 2023.
Article En | MEDLINE | ID: mdl-37601247

Background: Worldwide, lung squamous cell carcinoma (LUSC) has wreaked havoc on humanity. Matrix metallopeptidase 12 (MMP12) plays an essential role in a variety of cancers. This study aimed to reveal the expression, clinical significance, and potential molecular mechanisms of MMP12 in LUSC. Methods: There were 2,738 messenger RNA (mRNA) samples from several multicenter databases used to detect MMP12 expression in LUSC, and 125 tissue samples were validated by immunohistochemistry (IHC) experiments. Receiver operator characteristic (ROC) curves, Kaplan-Meier curves, and univariate and multivariate Cox regression analyses were used to assess the clinical value of MMP12 in LUSC. The potential molecular mechanisms of MMP12 were explored by gene enrichment analysis and immune correlation analysis. Furthermore, single-cell sequencing was used to determine the distribution of MMP12 in multiple tumor microenvironment cells. Results: MMP12 was significantly overexpressed at the mRNA level (p < 0.05, SMD = 3.13, 95% CI [2.51-3.75]), which was verified at the protein level (p < 0.001) by internal IHC experiments. MMP12 expression could be used to differentiate LUSC samples from normal samples, and overexpression of MMP12 itself implied a worse clinical prognosis and higher levels of immune cell infiltration in LUSC patients. MMP12 was involved in cancer development and progression through two immune-related signaling pathways. The high expression of MMP12 in LUSC might act as an antigen-presenting cell-associated tumor neoantigen and activate the body's immune response. Conclusions: MMP12 expression is upregulated in LUSC and high expression of MMP12 serves as a risk factor for LUSC patients. MMP12 may be involved in cancer development by participating in immune-related signaling pathways and elevating the level of immune cell infiltration.


Carcinoma, Non-Small-Cell Lung , Carcinoma, Squamous Cell , Lung Neoplasms , Humans , Carcinoma, Squamous Cell/genetics , Lung , Lung Neoplasms/diagnosis , Matrix Metalloproteinase 12/genetics , Prognosis , Tumor Microenvironment/genetics
19.
Arch Gerontol Geriatr ; 115: 105125, 2023 12.
Article En | MEDLINE | ID: mdl-37481845

OBJECTIVE: We conducted this systematic review and meta-analysis to summarize the prevalence of sarcopenia and its impact on mortality in patients undergoing TAVI. METHOD: Medline, EMBASE, and PubMed were searched from inception to October 14, 2022 to retrieve eligible studies that assessed sarcopenia in patients undergoing TAVI. Pooled sarcopenia prevalence was calculated with 95% confidence interval (CI), and heterogeneity was estimated using the I2 test. Associations of sarcopenia with mortality of post-TAVI were expressed as hazard ratio (HR) or odds ratios (OR) and 95% CI. RESULTS: 13 studies involving 5248 patients (mean age from 78.1 to 84.9 years) undergoing TAVI were included. There were eleven studies defined sarcopenia based on loss of skeletal muscle mass index (SMI), while only two studies used low muscle mass plus low muscle strength and/or low physical performance. Overall, the pooled prevalence of sarcopenia in patients undergoing TAVI was 49% (95% CI 41%-58%). Sarcopenia was associated with an increased risk of long-term (≥1 year) mortality in patients after TAVI (HR 1.57, 95% CI 1.33-1.85, P < 0.001), with similar findings in the subgroups stratified by follow-up time, definition of sarcopenia, study location, and study design. Furthermore, the 1-, 2-, and 3-year cumulative probabilities of survival in patients with sarcopenia were significantly lower than non-sarcopenia (74.0% vs 91.0%, 68.3% vs 78.0%, and 72.6% vs 79.8%, all P < 0.05). CONCLUSIONS: Although there are substantial differences in diagnostic criteria, sarcopenia is highly prevalent in patients undergoing TAVI and its linked to increased long-term mortality after TAVI.


Aortic Valve Stenosis , Sarcopenia , Transcatheter Aortic Valve Replacement , Aged , Aged, 80 and over , Humans , Aortic Valve Stenosis/complications , Aortic Valve Stenosis/surgery , Prognosis , Risk Factors , Sarcopenia/etiology , Sarcopenia/complications , Transcatheter Aortic Valve Replacement/mortality , Treatment Outcome
20.
Foot (Edinb) ; 56: 102045, 2023 Sep.
Article En | MEDLINE | ID: mdl-37499379

AIM: This study aimed to investigate the clinical efficacy of externally applied Traditional Chinese Medicine (TCM) on diabetic foot. METHODS: We searched the China Knowledge Network (CNKI), Wanfang Database, PubMed and Web of Science from inception to July 31, 2022, to find all randomized control trials (RCTs) related to externally applied TCMs in diabetic foot treatment. Information about the total effective rate, healing rate, and healing time were extracted. In addition, the relative risk (RR)/odds ratio (OR) or standardized mean difference (SMD) and 95 % confidence interval (CI) were calculated. RESULTS: Finally, a total of 34 RCTs including 3758 patients were included in this meta-analysis. There were 5 articles that reported hydropathic compress with astrogalin, 14 articles that reported MEBO burn cream, 9 articles that reported compound cortex phellodendri liquid and 6 articles that reported Shengji Yuhong ointment. Compared with the basic treatment, the externally applied TCM (astrogalin, MEBO burn cream, compound cortex phellodendri liquid and Shengji Yuhong ointment) combined with basic treatment improved the total effective rate (RR = 1.31 [1.20, 1.42], P < 0.0001) and healing rate (RR = 1.84 [1.56, 2.17], P < 0.0001) and shortened the healing time (SMD = - 2.51 [- 3.39, - 1.63], P < 0.0001). CONCLUSION: Our systematic review and meta-analysis revealed that common TCM applied externally could significantly improve the clinical efficacy comparing to the basic treatment.

...