Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 99
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2024 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-39071417

RESUMEN

Microbial metabolomics studies are a common approach to identifying microbial strains that have a capacity to produce new chemistries both in vitro and in situ. A limitation to applying microbial metabolomics to the discovery of new chemical entities is the rediscovery of known compounds, or "known unknowns." One contributing factor to this rediscovery is the majority of laboratories use one ionization source-electrospray ionization (ESI)-to conduct metabolomics studies. Although ESI is an efficient, widely adopted ionization method, its widespread use may contribute to the re-identification of known metabolites. Here, we present the use of a dielectric barrier discharge ionization (DBDI) for microbial metabolomics applications through the use of soft ionization chemical reaction in-transfer (SICRIT). Additionally, we compared SICRIT to ESI using two different Vibrio species-Vibrio fischeri, a symbiotic marine bacterium, and Vibrio cholerae, a pathogenic bacterium. Overall, we found that the SICRIT source ionizes a different set of metabolites than ESI, and it has the ability to ionize lipids more efficiently than ESI in positive mode. This work highlights the value of using more than one ionization source for the detection of metabolites.

2.
bioRxiv ; 2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38746121

RESUMEN

Although horizontal gene transfer is pervasive in the intestinal microbiota, we understand only superficially the roles of most exchanged genes and how the mobile repertoire affects community dynamics. Similarly, little is known about the mechanisms underlying the ability of a community to recover after a perturbation. Here, we identified and functionally characterized a large conjugative plasmid that is one of the most frequently transferred elements among Bacteroidales species and is ubiquitous in diverse human populations. This plasmid encodes both an extracellular polysaccharide and fimbriae, which promote the formation of multispecies biofilms in the mammalian gut. We use a hybridization-based approach to visualize biofilms in clarified whole colon tissue with unprecedented 3D spatial resolution. These biofilms increase bacterial survival to common stressors encountered in the gut, increasing strain resiliency, and providing a rationale for the plasmid's recent spread and high worldwide prevalence.

3.
mBio ; 15(6): e0044024, 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38700325

RESUMEN

Motility promotes biofilm initiation during the early steps of this process: microbial surface association and attachment. Motility is controlled in part by chemotaxis signaling, so it seems reasonable that chemotaxis may also affect biofilm formation. There is a gap, however, in our understanding of the interactions between chemotaxis and biofilm formation, partly because most studies analyzed the phenotype of only a single chemotaxis signaling mutant, e.g., cheA. Here, we addressed the role of chemotaxis in biofilm formation using a full set of chemotaxis signaling mutants in Helicobacter pylori, a class I carcinogen that infects more than half the world's population and forms biofilms. Using mutants that lack each chemotaxis signaling protein, we found that chemotaxis signaling affected the biofilm initiation stage, but not mature biofilm formation. Surprisingly, some chemotaxis mutants elevated biofilm initiation, while others inhibited it in a manner that was not tied to chemotaxis ability or ligand input. Instead, the biofilm phenotype correlated with flagellar rotational bias. Specifically, mutants with a counterclockwise bias promoted biofilm initiation, e.g., ∆cheA, ∆cheW, or ∆cheV1; in contrast, those with a clockwise bias inhibited it, e.g., ∆cheZ, ∆chePep, or ∆cheV3. We tested this correlation using a counterclockwise bias-locked flagellum, which induced biofilm formation independent of the chemotaxis system. These CCW flagella, however, were not sufficient to induce biofilm formation, suggesting there are downstream players. Overall, our work highlights the new finding that flagellar rotational direction promotes biofilm initiation, with the chemotaxis signaling system operating as one mechanism to control flagellar rotation. IMPORTANCE: Chemotaxis signaling systems have been reported to contribute to biofilm formation in many bacteria; however, how they regulate biofilm formation remains largely unknown. Chemotaxis systems are composed of many distinct kinds of proteins, but most previous work analyzed the biofilm effect of loss of only a few. Here, we explored chemotaxis' role during biofilm formation in the human-associated pathogenic bacterium Helicobacter pylori. We found that chemotaxis proteins are involved in biofilm initiation in a manner that correlated with how they affected flagellar rotation. Biofilm initiation was high in mutants with counterclockwise (CCW) flagellar bias and low in those with clockwise bias. We supported the idea that a major driver of biofilm formation is flagellar rotational direction using a CCW-locked flagellar mutant, which stays CCW independent of chemotaxis input and showed elevated biofilm initiation. Our data suggest that CCW-rotating flagella, independent of chemotaxis inputs, are a biofilm-promoting signal.


Asunto(s)
Proteínas Bacterianas , Biopelículas , Quimiotaxis , Flagelos , Helicobacter pylori , Biopelículas/crecimiento & desarrollo , Helicobacter pylori/fisiología , Helicobacter pylori/genética , Flagelos/fisiología , Flagelos/genética , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Transducción de Señal , Mutación , Rotación
4.
Anal Chem ; 96(21): 8308-8316, 2024 05 28.
Artículo en Inglés | MEDLINE | ID: mdl-38752543

RESUMEN

Microbial biofilms represent an important lifestyle for bacteria and are dynamic three-dimensional structures. Cyclic dimeric guanosine monophosphate (c-di-GMP) is a ubiquitous signaling molecule that is known to be tightly regulated with biofilm processes. While measurements of global levels of c-di-GMP have proven valuable toward understanding the genetic control of c-di-GMP production, there is a need for tools to observe the local changes of c-di-GMP production in biofilm processes. We have developed a label-free method for the direct detection of c-di-GMP in microbial colony biofilms using matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI). We applied this method to the enteric pathogen Vibrio cholerae, the marine symbiont V. fischeri, and the opportunistic pathogen Pseudomonas aeruginosa PA14 and detected spatial and temporal changes in c-di-GMP signal that accompanied genetic alterations in factors that synthesize and degrade the compound. We further demonstrated how this method can be simultaneously applied to detect additional metabolites of interest from a single sample.


Asunto(s)
Biopelículas , GMP Cíclico , Pseudomonas aeruginosa , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Vibrio cholerae , GMP Cíclico/análogos & derivados , GMP Cíclico/metabolismo , GMP Cíclico/análisis , Pseudomonas aeruginosa/metabolismo , Vibrio cholerae/metabolismo , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos , Aliivibrio fischeri/metabolismo
5.
mBio ; 15(2): e0330423, 2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-38206049

RESUMEN

Biofilms are matrix-encased microbial communities that increase the environmental fitness and infectivity of many human pathogens including Vibrio cholerae. Biofilm matrix assembly is essential for biofilm formation and function. Known components of the V. cholerae biofilm matrix are the polysaccharide Vibrio polysaccharide (VPS), matrix proteins RbmA, RbmC, Bap1, and extracellular DNA, but the majority of the protein composition is uncharacterized. This study comprehensively analyzed the biofilm matrix proteome and revealed the presence of outer membrane proteins (OMPs). Outer membrane vesicles (OMVs) were also present in the V. cholerae biofilm matrix and were associated with OMPs and many biofilm matrix proteins suggesting that they participate in biofilm matrix assembly. Consistent with this, OMVs had the capability to alter biofilm structural properties depending on their composition. OmpU was the most prevalent OMP in the matrix, and its absence altered biofilm architecture by increasing VPS production. Single-cell force spectroscopy revealed that proteins critical for biofilm formation, OmpU, the matrix proteins RbmA, RbmC, Bap1, and VPS contribute to cell-surface adhesion forces at differing efficiency, with VPS showing the highest efficiency whereas Bap1 showing the lowest efficiency. Our findings provide new insights into the molecular mechanisms underlying biofilm matrix assembly in V. cholerae, which may provide new opportunities to develop inhibitors that specifically alter biofilm matrix properties and, thus, affect either the environmental survival or pathogenesis of V. cholerae.IMPORTANCECholera remains a major public health concern. Vibrio cholerae, the causative agent of cholera, forms biofilms, which are critical for its transmission, infectivity, and environmental persistence. While we know that the V. cholerae biofilm matrix contains exopolysaccharide, matrix proteins, and extracellular DNA, we do not have a comprehensive understanding of the majority of biofilm matrix components. Here, we discover outer membrane vesicles (OMVs) within the biofilm matrix of V. cholerae. Proteomic analysis of the matrix and matrix-associated OMVs showed that OMVs carry key matrix proteins and Vibrio polysaccharide (VPS) to help build biofilms. We also characterize the role of the highly abundant outer membrane protein OmpU in biofilm formation and show that it impacts biofilm architecture in a VPS-dependent manner. Understanding V. cholerae biofilm formation is important for developing a better prevention and treatment strategy framework.


Asunto(s)
Vibrio cholerae , Humanos , Vibrio cholerae/metabolismo , Proteínas de la Membrana/metabolismo , Matriz Extracelular de Sustancias Poliméricas/metabolismo , Proteómica , Proteínas Bacterianas/metabolismo , Biopelículas , Polisacáridos/metabolismo , ADN/metabolismo
6.
bioRxiv ; 2023 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-37873360

RESUMEN

Microbial biofilms represent an important lifestyle for bacteria and are dynamic three dimensional structures. Cyclic dimeric guanosine monophosphate (c-di-GMP) is a ubiquitous signaling molecule that is known to be tightly regulated with biofilm processes. While measurements of global levels of c-di-GMP have proven valuable towards understanding the genetic control of c-di-GMP production, there is a need for tools to observe the local changes of c-di-GMP production in biofilm processes. We have developed a label-free method for the direct detection of c-di-GMP in microbial colony biofilms using matrix-assisted laser desorption ionization mass spectrometry imaging (MALDI-MSI). We applied this method to the enteric pathogen Vibrio cholerae, the marine symbiont V. fischeri, and the opportunistic pathogen Pseudomonas aeruginosa PA14 and detected spatial and temporal changes in c-di-GMP signal that accompanied genetic alterations in factors that synthesize and degrade the compound. We further demonstrated how this method can be simultaneously applied to detect additional metabolites of interest in a single experiment.

7.
Proc Natl Acad Sci U S A ; 120(39): e2308238120, 2023 09 26.
Artículo en Inglés | MEDLINE | ID: mdl-37729203

RESUMEN

Vibrio cholerae, the causative agent of the disease cholera, is responsible for multiple pandemics. V. cholerae binds to and colonizes the gastrointestinal tract within the human host, as well as various surfaces in the marine environment (e.g., zooplankton) during interepidemic periods. A large adhesin, the Flagellar Regulated Hemagglutinin A (FrhA), enhances binding to erythrocytes and epithelial cells and enhances intestinal colonization. We identified a peptide-binding domain (PBD) within FrhA that mediates hemagglutination, binding to epithelial cells, intestinal colonization, and facilitates biofilm formation. Intriguingly, this domain is also found in the ice-binding protein of the Antarctic bacterium Marinomonas primoryensis, where it mediates binding to diatoms. Peptide inhibitors of the M. primoryensis PBD inhibit V. cholerae binding to human cells as well as to diatoms and inhibit biofilm formation. Moreover, the M. primoryensis PBD inserted into FrhA allows V. cholerae to bind human cells and colonize the intestine and also enhances biofilm formation, demonstrating the interchangeability of the PBD from these bacteria. Importantly, peptide inhibitors of PBD reduce V. cholerae intestinal colonization in infant mice. These studies demonstrate how V. cholerae uses a PBD shared with a diatom-binding Antarctic bacterium to facilitate intestinal colonization in humans and biofilm formation in the environment.


Asunto(s)
Diatomeas , Vibrio cholerae , Animales , Humanos , Lactante , Ratones , Bacterias , Agregación Celular , Tracto Gastrointestinal , Intestinos , Vibrio cholerae/genética
8.
PLoS Pathog ; 19(5): e1011415, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37216386

RESUMEN

The facultative human pathogen, Vibrio cholerae, employs two-component signal transduction systems (TCS) to sense and respond to environmental signals encountered during its infection cycle. TCSs consist of a sensor histidine kinase (HK) and a response regulator (RR); the V. cholerae genome encodes 43 HKs and 49 RRs, of which 25 are predicted to be cognate pairs. Using deletion mutants of each HK gene, we analyzed the transcription of vpsL, a biofilm gene required for Vibrio polysaccharide and biofilm formation. We found that a V. cholerae TCS that had not been studied before, now termed Rvv, controls biofilm gene transcription. The Rvv TCS is part of a three-gene operon that is present in 30% of Vibrionales species. The rvv operon encodes RvvA, the HK; RvvB, the cognate RR; and RvvC, a protein of unknown function. Deletion of rvvA increased transcription of biofilm genes and altered biofilm formation, while deletion of rvvB or rvvC lead to no changes in biofilm gene transcription. The phenotypes observed in ΔrvvA depend on RvvB. Mutating RvvB to mimic constitutively active and inactive versions of the RR only impacted phenotypes in the ΔrvvA genetic background. Mutating the conserved residue required for kinase activity in RvvA did not affect phenotypes, whereas mutation of the conserved residue required for phosphatase activity mimicked the phenotype of the rvvA mutant. Furthermore, ΔrvvA displayed a significant colonization defect which was dependent on RvvB and RvvB phosphorylation state, but not on VPS production. We found that RvvA's phosphatase activity regulates biofilm gene transcription, biofilm formation, and colonization phenotypes. This is the first systematic analysis of the role of V. cholerae HKs in biofilm gene transcription and resulted in the identification of a new regulator of biofilm formation and virulence, advancing our understanding of the role TCSs play in regulating these critical cellular processes in V. cholerae.


Asunto(s)
Vibrio cholerae , Humanos , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Biopelículas , Virulencia , Monoéster Fosfórico Hidrolasas/metabolismo , Regulación Bacteriana de la Expresión Génica
9.
EMBO J ; 42(3): e111562, 2023 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-36504455

RESUMEN

Pandemic and endemic strains of Vibrio cholerae arise from toxigenic conversion by the CTXφ bacteriophage, a process by which CTXφ infects nontoxigenic strains of V. cholerae. CTXφ encodes the cholera toxin, an enterotoxin responsible for the watery diarrhea associated with cholera infections. Despite the critical role of CTXφ during infections, signals that affect CTXφ-driven toxigenic conversion or expression of the CTXφ-encoded cholera toxin remain poorly characterized, particularly in the context of the gut mucosa. Here, we identify mucin polymers as potent regulators of CTXφ-driven pathogenicity in V. cholerae. Our results indicate that mucin-associated O-glycans block toxigenic conversion by CTXφ and suppress the expression of CTXφ-related virulence factors, including the toxin co-regulated pilus and cholera toxin, by interfering with the TcpP/ToxR/ToxT virulence pathway. By synthesizing individual mucin glycan structures de novo, we identify the Core 2 motif as the critical structure governing this virulence attenuation. Overall, our results highlight a novel mechanism by which mucins and their associated O-glycan structures affect CTXφ-mediated evolution and pathogenicity of V. cholerae, underscoring the potential regulatory power housed within mucus.


Asunto(s)
Bacteriófagos , Toxina del Cólera , Mucinas , Vibrio cholerae , Virulencia , Bacteriófagos/genética , Bacteriófagos/patogenicidad , Toxina del Cólera/genética , Toxina del Cólera/metabolismo , Mucinas/genética , Mucinas/metabolismo , Vibrio cholerae/genética , Vibrio cholerae/metabolismo , Virulencia/genética , Virulencia/fisiología , Polisacáridos/genética , Polisacáridos/metabolismo
10.
mBio ; 13(4): e0188522, 2022 08 30.
Artículo en Inglés | MEDLINE | ID: mdl-35880882

RESUMEN

The human pathogen Vibrio cholerae grows as biofilms, communities of cells encased in an extracellular matrix. When growing in biofilms, cells compete for resources and space. One common competitive mechanism among Gram-negative bacteria is the type six secretion system (T6SS), which can deliver toxic effector proteins into a diverse group of target cells, including other bacteria, phagocytic amoebas, and human macrophages. The response regulator VxrB positively regulates both biofilm matrix and T6SS gene expression. Here, we directly observe T6SS activity within biofilms, which results in improved competition with strains lacking the T6SS. VxrB significantly contributes to both attack and defense via T6SS, while also influencing competition via regulation of biofilm matrix production. We further determined that both Vibrio polysaccharide (VPS) and the biofilm matrix protein RbmA can protect cells from T6SS attack within mature biofilms. By varying the spatial mixing of predator and prey cells in biofilms, we show that a high degree of mixing favors T6SS predator strains and that the presence of extracellular DNA in V. cholerae biofilms is a signature of T6SS killing. VxrB therefore regulates both T6SS attack and matrix-based T6SS defense, to control antagonistic interactions and competition outcomes during mixed-strain biofilm formation. IMPORTANCE This work demonstrates that the Vibrio cholerae type six secretion system (T6SS) can actively kill prey strains within the interior of biofilm populations with substantial impact on population dynamics. We additionally show that the response regulator VxrB contributes to both T6SS killing and protection from T6SS killing within biofilms. Components of the biofilm matrix and the degree of spatial mixing among strains also strongly influence T6SS competition dynamics. T6SS killing within biofilms results in increased localized release of extracellular DNA, which serves as an additional matrix component. These findings collectively demonstrate that T6SS killing can contribute to competition within biofilms and that this competition depends on key regulators, matrix components, and the extent of spatial population mixture during biofilm growth.


Asunto(s)
Sistemas de Secreción Tipo VI , Vibrio cholerae , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Biopelículas , Matriz Extracelular/metabolismo , Humanos , Sistemas de Secreción Tipo VI/genética , Sistemas de Secreción Tipo VI/metabolismo , Vibrio cholerae/metabolismo
11.
Annu Rev Microbiol ; 76: 503-532, 2022 09 08.
Artículo en Inglés | MEDLINE | ID: mdl-35671532

RESUMEN

Biofilms are a widely observed growth mode in which microbial communities are spatially structured and embedded in a polymeric extracellular matrix. Here, we focus on the model bacterium Vibrio cholerae and summarize the current understanding of biofilm formation, including initial attachment, matrix components, community dynamics, social interactions, molecular regulation, and dispersal. The regulatory network that orchestrates the decision to form and disperse from biofilms coordinates various environmental inputs. These cues are integrated by several transcription factors, regulatory RNAs, and second-messenger molecules, including bis-(3'-5')-cyclic dimeric guanosine monophosphate (c-di-GMP). Through complex mechanisms, V. cholerae weighs the energetic cost of forming biofilms against the benefits of protection and social interaction that biofilms provide.


Asunto(s)
Biopelículas , Vibrio cholerae , Proteínas Bacterianas/metabolismo , Biopelículas/crecimiento & desarrollo , GMP Cíclico/metabolismo , Regulación Bacteriana de la Expresión Génica , Factores de Transcripción/metabolismo , Vibrio cholerae/genética , Vibrio cholerae/fisiología
12.
Methods Enzymol ; 665: 281-304, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35379438

RESUMEN

Matrix-assisted laser desorption/ionization imaging mass spectrometry (MALDI-IMS) is an appealing label-free method for imaging biological samples which focuses on the spatial distribution of chemical signals. This approach has been used to study the chemical ecology of microbes and can be applied to study the chemical responses of microbes to treatment with exogenous compounds. Specific conjugated cholic acids such as taurocholic acid (TCA), have been shown to inhibit biofilm formation in the enteric pathogen Vibrio cholerae and MALDI-IMS can be used to directly observe the chemical responses of V. cholerae biofilm colonies to treatment with TCA. A major challenge of MALDI-IMS is optimizing the sample preparation and drying for a particular growth condition and microbial strain. Here we demonstrate how V. cholerae is cultured and prepared for MALDI-IMS analysis and highlight critical steps to ensure proper sample adherence to a MALDI target plate and maintain spatial distributions when applying this technique to any microbial strain. We additionally show how to use both manual interrogation and statistical analyses of MALDI-IMS data to establish the adequacy of the sample preparation protocol. This protocol can serve as a guideline for the development of sample preparation techniques and the acquisition of high quality MALDI-IMS data.


Asunto(s)
Biopelículas , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos
13.
Proc Natl Acad Sci U S A ; 119(7)2022 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-35135874

RESUMEN

Bacteria use surface appendages called type IV pili to perform diverse activities including DNA uptake, twitching motility, and attachment to surfaces. The dynamic extension and retraction of pili are often required for these activities, but the stimuli that regulate these dynamics remain poorly characterized. To address this question, we study the bacterial pathogen Vibrio cholerae, which uses mannose-sensitive hemagglutinin (MSHA) pili to attach to surfaces in aquatic environments as the first step in biofilm formation. Here, we use a combination of genetic and cell biological approaches to describe a regulatory pathway that allows V. cholerae to rapidly abort biofilm formation. Specifically, we show that V. cholerae cells retract MSHA pili and detach from a surface in a diffusion-limited, enclosed environment. This response is dependent on the phosphodiesterase CdpA, which decreases intracellular levels of cyclic-di-GMP to induce MSHA pilus retraction. CdpA contains a putative nitric oxide (NO)-sensing NosP domain, and we demonstrate that NO is necessary and sufficient to stimulate CdpA-dependent detachment. Thus, we hypothesize that the endogenous production of NO (or an NO-like molecule) in V. cholerae stimulates the retraction of MSHA pili. These results extend our understanding of how environmental cues can be integrated into the complex regulatory pathways that control pilus dynamic activity and attachment in bacterial species.


Asunto(s)
Proteínas Fimbrias/metabolismo , Fimbrias Bacterianas/fisiología , Óxido Nítrico/farmacología , Vibrio cholerae/efectos de los fármacos , Vibrio cholerae/metabolismo , Adhesión Bacteriana/efectos de los fármacos , Adhesión Bacteriana/fisiología , Proteínas Fimbrias/genética , Regulación Bacteriana de la Expresión Génica , Vibrio cholerae/genética
14.
Molecules ; 26(15)2021 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-34361735

RESUMEN

Biofilms, the predominant growth mode of microorganisms, pose a significant risk to human health. The protective biofilm matrix, typically composed of exopolysaccharides, proteins, nucleic acids, and lipids, combined with biofilm-grown bacteria's heterogenous physiology, leads to enhanced fitness and tolerance to traditional methods for treatment. There is a need to identify biofilm inhibitors using diverse approaches and targeting different stages of biofilm formation. This review discusses discovery strategies that successfully identified a wide range of inhibitors and the processes used to characterize their inhibition mechanism and further improvement. Additionally, we examine the structure-activity relationship (SAR) for some of these inhibitors to optimize inhibitor activity.


Asunto(s)
Antibacterianos/farmacología , Biopelículas/efectos de los fármacos , Matriz Extracelular de Sustancias Poliméricas/efectos de los fármacos , Bacterias Gramnegativas/efectos de los fármacos , Bacterias Grampositivas/efectos de los fármacos , Bibliotecas de Moléculas Pequeñas/farmacología , Antibacterianos/biosíntesis , Antibacterianos/síntesis química , Antibacterianos/aislamiento & purificación , Proteínas Bacterianas/antagonistas & inhibidores , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Biopelículas/crecimiento & desarrollo , GMP Cíclico/antagonistas & inhibidores , GMP Cíclico/química , GMP Cíclico/metabolismo , Diseño de Fármacos , Descubrimiento de Drogas , Farmacorresistencia Bacteriana/efectos de los fármacos , Matriz Extracelular de Sustancias Poliméricas/química , Matriz Extracelular de Sustancias Poliméricas/metabolismo , Bacterias Gramnegativas/crecimiento & desarrollo , Bacterias Gramnegativas/patogenicidad , Bacterias Grampositivas/crecimiento & desarrollo , Bacterias Grampositivas/patogenicidad , Lípidos/antagonistas & inhibidores , Lípidos/química , Pruebas de Sensibilidad Microbiana , Ácidos Nucleicos/antagonistas & inhibidores , Ácidos Nucleicos/química , Ácidos Nucleicos/metabolismo , Polisacáridos Bacterianos/antagonistas & inhibidores , Polisacáridos Bacterianos/química , Polisacáridos Bacterianos/metabolismo , Bibliotecas de Moléculas Pequeñas/química , Bibliotecas de Moléculas Pequeñas/aislamiento & purificación , Relación Estructura-Actividad
15.
J Bacteriol ; 203(11)2021 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-33753465

RESUMEN

VxrA and VxrB are cognate histidine kinase (HK) - response regulator (RR) pairs of a two-component signaling system (TCS) found in Vibrio cholerae, a bacterial pathogen that causes cholera. The VxrAB TCS positively regulates virulence, the Type VI Secretion System, biofilm formation, and cell wall homeostasis in V. cholerae, providing protection from environmental stresses and contributing to the transmission and virulence of the pathogen. The VxrA HK has a unique periplasmic sensor domain (SD) and, remarkably, lacks a cytoplasmic linker domain between the second transmembrane helix and the dimerization and histidine phosphotransfer (DHp) domain, indicating that this system may utilize a potentially unique signal sensing and transmission TCS mechanism. In this study, we have determined several crystal structures of VxrA-SD and its mutants. These structures reveal a novel structural fold forming an unusual ß hairpin-swapped dimer. A conformational change caused by relative rotation of the two monomers in a VxrA-SD dimer could potentially change the association of transmembrane helices and, subsequently, the pairing of cytoplasmic DHp domains. Based on the structural observation, we propose a putative scissor-like closing regulation mechanism for the VxrA HK.IMPORTANCE V. cholerae has a dynamic life cycle, which requires rapid adaptation to changing external conditions. Two-component signal transduction (TCS) systems allow V. cholerae to sense and respond to these environmental changes. The VxrAB TCS positively regulates a number of important V. cholerae phenotypes, including virulence, the Type Six Secretion System, biofilm formation, and cell wall homeostasis. Here, we provide the crystal structure of the VxrA sensor histidine kinase sensing domain and propose a mechanism for signal transduction. The cognate signal for VxrAB remains unknown, however, in this work we couple our structural analysis with functional assessments of key residues to further our understanding of this important TCS.

17.
Nat Microbiol ; 6(2): 151-156, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33398098

RESUMEN

Biofilms are microbial communities that represent a highly abundant form of microbial life on Earth. Inside biofilms, phenotypic and genotypic variations occur in three-dimensional space and time; microscopy and quantitative image analysis are therefore crucial for elucidating their functions. Here, we present BiofilmQ-a comprehensive image cytometry software tool for the automated and high-throughput quantification, analysis and visualization of numerous biofilm-internal and whole-biofilm properties in three-dimensional space and time.


Asunto(s)
Biopelículas , Citometría de Imagen/métodos , Imagenología Tridimensional/métodos , Microbiota , Programas Informáticos , Bacterias/citología , Bacterias/genética , Bacterias/crecimiento & desarrollo , Análisis Espacio-Temporal
18.
Phys Biol ; 18(5)2021 06 23.
Artículo en Inglés | MEDLINE | ID: mdl-33462162

RESUMEN

Bacterial biofilms are communities of bacteria that exist as aggregates that can adhere to surfaces or be free-standing. This complex, social mode of cellular organization is fundamental to the physiology of microbes and often exhibits surprising behavior. Bacterial biofilms are more than the sum of their parts: single-cell behavior has a complex relation to collective community behavior, in a manner perhaps cognate to the complex relation between atomic physics and condensed matter physics. Biofilm microbiology is a relatively young field by biology standards, but it has already attracted intense attention from physicists. Sometimes, this attention takes the form of seeing biofilms as inspiration for new physics. In this roadmap, we highlight the work of those who have taken the opposite strategy: we highlight the work of physicists and physical scientists who use physics to engage fundamental concepts in bacterial biofilm microbiology, including adhesion, sensing, motility, signaling, memory, energy flow, community formation and cooperativity. These contributions are juxtaposed with microbiologists who have made recent important discoveries on bacterial biofilms using state-of-the-art physical methods. The contributions to this roadmap exemplify how well physics and biology can be combined to achieve a new synthesis, rather than just a division of labor.


Asunto(s)
Adhesión Bacteriana/fisiología , Fenómenos Fisiológicos Bacterianos , Biopelículas , Percepción de Quorum/fisiología , Biopelículas/crecimiento & desarrollo
20.
PLoS Pathog ; 16(8): e1008745, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32841296

RESUMEN

Production of an extracellular matrix is essential for biofilm formation, as this matrix both secures and protects the cells it encases. Mechanisms underlying production and assembly of matrices are poorly understood. Vibrio cholerae, relies heavily on biofilm formation for survival, infectivity, and transmission. Biofilm formation requires Vibrio polysaccharide (VPS), which is produced by vps gene-products, yet the function of these products remains unknown. Here, we demonstrate that the vps gene-products vpsO and vpsU encode respectively for a tyrosine kinase and a cognate tyrosine phosphatase. Collectively, VpsO and VpsU act as a tyrosine phosphoregulatory system to modulate VPS production. We present structures of VpsU and the kinase domain of VpsO, and we report observed autocatalytic tyrosine phosphorylation of the VpsO C-terminal tail. The position and amount of tyrosine phosphorylation in the VpsO C-terminal tail represses VPS production and biofilm formation through a mechanism involving the modulation of VpsO oligomerization. We found that tyrosine phosphorylation enhances stability of VpsO. Regulation of VpsO phosphorylation by the phosphatase VpsU is vital for maintaining native VPS levels. This study provides new insights into the mechanism and regulation of VPS production and establishes general principles of biofilm matrix production and its inhibition.


Asunto(s)
Proteínas Bacterianas/metabolismo , Biopelículas/crecimiento & desarrollo , Polisacáridos Bacterianos/biosíntesis , Multimerización de Proteína , Proteínas Tirosina Fosfatasas/metabolismo , Vibrio cholerae/fisiología , Proteínas Bacterianas/genética , Fosforilación/fisiología , Polisacáridos Bacterianos/genética , Proteínas Tirosina Fosfatasas/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA