Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
FEBS Open Bio ; 2024 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-39073017

RESUMEN

Ageing is an inherent and intricate biological process that takes place in living organisms as time progresses. It involves the decline of multiple physiological functions, leading to body structure and overall performance modifications. The ageing process differs among individuals and is influenced by various factors, including lifestyle, environment and genetic makeup. Metabolic changes and reduced locomotor activity are common hallmarks of ageing. Our study focuses on exploring these phenomena in prematurely ageing PolgA(D257A/D257A) mice (also known as PolgA) aged 41-42 weeks, as they closely mimic human ageing. We assess parameters such as oxygen consumption (VO2), carbon dioxide production (VCO2), respiratory exchange ratio (RER) and locomotor activity using a metabolic cage for 4 days and comparing them with age-matched wild-type littermates (WT). Our findings revealed that VO2, VCO2, RER, locomotor activities, water intake and feeding behaviour show a daily rhythm, aligning with roughly a 24-h cycle. We observed that the RER was significantly increased in PolgA mice compared to WT mice during the night-time of the light-dark cycle, suggesting a shift towards a higher reliance on carbohydrate metabolism due to more food intake during the active phase. Additionally, female PolgA mice displayed a distinct phenotype with reduced walking speed, walking distance, body weight and grip strength in comparison to male PolgA and WT mice, indicating an early sign of ageing. Taken together, our research highlights the impact of sex-specific patterns on ageing traits in PolgA mice aged 41-42 weeks, which may be attributable to human ageing phenotypes. The unique genetic composition and accelerated ageing characteristics of PolgA mice make them invaluable in ageing studies, facilitating the investigation of underlying biological mechanisms and the identification of potential therapeutic targets for age-related diseases.

2.
Heliyon ; 10(12): e32949, 2024 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-39021958

RESUMEN

Osteoclasts are essential for bone remodeling by adapting their resorptive activity in response to their mechanical in vivo environment. However, the molecular mechanisms underlying this process remain unclear. Here, we demonstrated the role of tartrate-resistant acid phosphatase (TRAP, Acp5), a key enzyme secreted by osteoclasts, in bone remodeling and mechanosensitivity. Using CRISPR/Cas9 reporter mice, we demonstrated bone cell reporter (BCRIbsp/Acp5) mice feature fluorescent TRAP-deficient osteoclasts and examined their activity during mechanically driven trabecular bone remodeling. Although BCRIbsp/Acp5 mice exhibited trabecular bone impairments and reduced resorption capacity in vitro, RNA sequencing revealed unchanged levels of key osteoclast-associated genes such as Ctsk, Mmp9, and Calcr. These findings, in conjunction with serum carboxy-terminal collagen crosslinks (CTX) and in vivo mechanical loading outcomes collectively indicated an unaltered bone resorption capacity of osteoclasts in vivo. Furthermore, we demonstrated similar mechanoregulation during trabecular bone remodeling in BCRIbsp/Acp5 and wild-type (WT) mice. Hence, this study provides valuable insights into the dynamics of TRAP activity in the context of bone remodeling and mechanosensation.

3.
Ageing Res Rev ; 93: 102118, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37935249

RESUMEN

Musculoskeletal aging encompasses the decline in bone and muscle function, leading to conditions such as frailty, osteoporosis, and sarcopenia. Unraveling the underlying molecular mechanisms and developing effective treatments are crucial for improving the quality of life for those affected. In this context, accelerated aging models offer valuable insights into these conditions by displaying the hallmarks of human aging. Herein, this review focuses on relevant mouse models of musculoskeletal aging with particular emphasis on frailty, osteoporosis, and sarcopenia. Among the discussed models, PolgA mice in particular exhibit hallmarks of musculoskeletal aging, presenting early-onset frailty, as well as reduced bone and muscle mass that closely resemble human musculoskeletal aging. Ultimately, findings from these models hold promise for advancing interventions targeted at age-related musculoskeletal disorders, effectively addressing the challenges posed by musculoskeletal aging and associated conditions in humans.


Asunto(s)
Fragilidad , Osteoporosis , Sarcopenia , Humanos , Animales , Ratones , Fragilidad/diagnóstico , Calidad de Vida , Envejecimiento/fisiología , Modelos Animales de Enfermedad
4.
Cell Tissue Res ; 383(3): 987-1002, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33367974

RESUMEN

Extracellular signals play essential roles during embryonic patterning by providing positional information in a concentration-dependent manner, and many such signals, like Wnt, fibroblast growth factor (FGF), Hedgehog (Hh), and retinoic acid, act by being secreted into the extracellular space, thereby triggering receptor-mediated responses in other cells. Isthmin1 (ism1) is a secreted protein whose gene expression pattern coincides with that of early dorsal determinants, nodal ligand genes like sqt and cyc, and with fgf8 during various phases of zebrafish development. Ism1 functions in early embryonic patterning and development are poorly understood; however, it has recently been shown to interact with nodal pathway genes to control organ asymmetry in chicken. Here, we show that misexpression of ism1 deletion constructs disrupts embryonic patterning in zebrafish and exhibits genetic interactions with both Fgf and nodal signaling. Unlike Fgf and nodal pathway mutants, CRISPR/Cas9-engineered ism1 mutants did not show obvious developmental defects. Further, in vivo single molecule fluorescence correlation spectroscopy (FCCS) showed that Ism1 diffuses freely in the extra-cellular space, with a diffusion coefficient similar to that of Fgf8a; however, our measurements do not support direct molecular interactions between Ism1 and either nodal ligands or Fgf8a in the developing zebrafish embryo. Together, data from gain- and loss-of-function experiments suggest that zebrafish Ism1 plays a complex role in regulating extracellular signals during early embryonic development.


Asunto(s)
Animales Modificados Genéticamente/embriología , Proteínas de Pez Cebra/fisiología , Pez Cebra/embriología , Animales , Tipificación del Cuerpo , Regulación del Desarrollo de la Expresión Génica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA