Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 261
1.
Purinergic Signal ; 2024 May 17.
Article En | MEDLINE | ID: mdl-38758511

Ecto-5'-nucleotidase/CD73 enzyme plays a key role in the regulation of extracellular adenosine levels, thereby exerting influence on adenosine homeostasis. Emerging evidence suggests that perturbations in purines and ecto-5'-nucleotidase activity are associated with an augmented susceptibility to schizophrenia. However, the precise impact of genetic variations in CD73 on individuals with schizophrenia remains poorly understood. Here, our study demonstrated that rs3734442 allele and rs4431401 heterozygote were conferred a significant risk of schizophrenia disease (rs3734442: odds ratio, 0.556; 95% CI, 0.375 to 0.825; p = 0.004; rs4431401: odds ratio, 1.881, 95% CI, 1.117 to 3.166; p = 0.020). Comparing different genders, we observed a significant association between rs3734442 genotypes and male cases (rs3734442: odds ratio, 0.452; 95% CI, 0.257 to 0.796; p = 0.007). Likewise, there was a significant association between rs4431401 genotypes and male patients (rs4431401: odds ratio, 2.570; 95% CI, 1.196 to 5.522; p = 0.015). Based on family history and antipsychotics medication usage, our data reveals that the rs9444348 allele exhibits the most significant association with familial susceptibility to schizophrenia (odds ratio, 1.541; 95% CI, 1.009 to 2.353; p = 0.048 for A vs G). Moreover, individuals carrying variants of rs6922, rs2229523, and rs2065114 while being treated with clozapine demonstrate a higher frequency proportion compared to those receiving risperidone treatment (p = 0.035; p = 0.049; p = 0.027 respectively). Additionally, our results indicate that patients with GG genotype of rs9444348 had significantly higher likelihood of using clozapine instead of sulpiride (p = 0.048). Overall, our data strongly suggest that genetic variations in CD73 are significantly associated with schizophrenia risk and may serve as valuable resources for identifying therapeutic targets.

2.
Psychiatry Investig ; 21(4): 329-339, 2024 Apr.
Article En | MEDLINE | ID: mdl-38695040

OBJECTIVE: Narrative exposure therapy (NET) has been used in various contexts for the treatment of the effects of trauma, with promising results in clinical trials. However, its effects on anxiety and depression are still unclear. The present study is a systematic review and meta-analysis of the effects of NET on depression and anxiety. METHODS: The Embase, Cumulative Index of Nursing and Allied Health Literature, PubMed, Web of Science core collection, Cochrane Library, Chinese National Knowledge Infrastructure, Chinese Biomedical Database, and Wangfang databases were searched from the earliest records to March 2023. Two researchers independently screened the literature, extracted data, evaluated the risk of bias, and cross-checked the data. Meta-analysis was performed using the program RevMan 5.3. RESULTS: Eleven randomized controlled trials with a total of 754 participants were included in the study. The results showed that NET reduced both the depression (standard mean difference [SMD]=-0.51, 95% confidence interval [CI] -0.73--0.29, p<0.00001) and anxiety (SMD=-0.65, 95% CI -1.13--0.18, p=0.007) scores of the patients. Furthermore, NET was found to alleviate negative emotions associated with guilt (mean difference [MD]=-3.60, 95% CI -5.52--1.68, p=0.0005) and negative change (MD=-5.80, 95% CI -9.76--1.83, p=0.004). CONCLUSION: This analysis showed that NET can alleviate depression and anxiety. It may thus be used in clinical settings to alleviate patients' negative feelings and aid their overall recovery.

3.
PhytoKeys ; 241: 49-63, 2024.
Article En | MEDLINE | ID: mdl-38628636

Cynanchumpingtaoi S.Jin Zeng, G.D.Tang & Miao Liao, sp. nov. (Apocynaceae) from Yunnan Province, China, is described and illustrated based on morphological and molecular evidence. Its deeply cordate to reniform leaves and campanulate, large flowers show that it is a member of former Raphistemma Wall., which has been included in Cynanchum L.. It is different from all former Raphistemma species by the broadly ovate corolla lobes, purple-red corolla and connivent corona tip slightly exceeding the corolla throat. Meanwhile, Cynanchumlonghushanense G.D.Tang & Miao Liao, nom. nov. is proposed as replacement name for Raphistemmabrevipedunculatum Y.Wan, which was considered a synonym of Cynanchumhooperianum (Blume) Liede & Khanum but is here reinstated as a distinct species because of significant morphological differences.

4.
Front Neurol ; 15: 1348038, 2024.
Article En | MEDLINE | ID: mdl-38633538

Background: Several studies have confirmed the direct relationship between extracellular acidification and the occurrence of pain. As an effective pain management approach, the mechanism of electroacupuncture (EA) treatment of acidification-induced pain is not fully understood. The purpose of this study was to assess the analgesic effect of EA in this type of pain and to explore the underlying mechanism(s). Methods: We used plantar injection of the acidified phosphate-buffered saline (PBS; pH 6.0) to trigger thermal hyperalgesia in male Sprague-Dawley (SD) rats aged 6-8 weeks. The value of thermal withdrawal latency (TWL) was quantified after applying EA stimulation to the ST36 acupoint and/or chemogenetic control of astrocytes in the hindlimb somatosensory cortex. Results: Both EA and chemogenetic astrocyte activation suppressed the acid-induced thermal hyperalgesia in the rat paw, whereas inhibition of astrocyte activation did not influence the hyperalgesia. At the same time, EA-induced analgesia was blocked by chemogenetic inhibition of astrocytes. Conclusion: The present results suggest that EA-activated astrocytes in the hindlimb somatosensory cortex exert an analgesic effect on acid-induced pain, although these astrocytes might only moderately regulate acid-induced pain in the absence of EA. Our results imply a novel mode of action of astrocytes involved in EA analgesia.

5.
Chem Biol Interact ; 394: 110990, 2024 May 01.
Article En | MEDLINE | ID: mdl-38579922

Swainsonine (SW) is the main toxic component of locoweed. Previous studies have shown that kidney damage is an early pathologic change in locoweed poisoning in animals. Trehalose induces autophagy and alleviates lysosomal damage, while its protective effect and mechanism against the toxic injury induced by SW is not clear. Based on the published literature, we hypothesize that transcription factor EB(TFEB) -regulated is targeted by SW and activating TFEB by trehalose would reverse the toxic effects. In this study, we investigate the mechanism of protective effects of trehalose using renal tubular epithelial cells. The results showed that SW induced an increase in the expression level of microtubule-associated protein light chain 3-II and p62 proteins and a decrease in the expression level of ATPase H+ transporting V1 Subunit A, Cathepsin B, Cathepsin D, lysosome-associated membrane protein 2 and TFEB proteins in renal tubular epithelial cells in a time and dose-dependent manner suggesting TFEB-regulated lysosomal pathway is adversely affected by SW. Conversely, treatment with trehalose, a known activator of TFEB promote TFEB nuclear translocation suggesting that TFEB plays an important role in protection against SW toxicity. We demonstrated in lysosome staining that SW reduced the number of lysosomes and increased the luminal pH, while trehalose could counteract these SW-induced effects. In summary, our results demonstrated for the first time that trehalose could alleviate the autophagy degradation disorder and lysosomal damage induced by SW. Our results provide an interesting method for reversion of SW-induced toxicity in farm animals and furthermore, activation of TFEB by trehalose suggesting novel mechanism of treating lysosomal storage diseases.


Autophagy , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors , Epithelial Cells , Kidney Tubules , Lysosomes , Swainsonine , Trehalose , Animals , Autophagy/drug effects , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/metabolism , Cell Line , Epithelial Cells/drug effects , Epithelial Cells/metabolism , Kidney Tubules/drug effects , Kidney Tubules/pathology , Kidney Tubules/metabolism , Kidney Tubules/cytology , Lysosomes/metabolism , Lysosomes/drug effects , Swainsonine/toxicity , Trehalose/pharmacology
6.
Respir Res ; 25(1): 143, 2024 Mar 29.
Article En | MEDLINE | ID: mdl-38553757

BACKGROUND: Although ROX index is frequently used to assess the efficacy of high-flow nasal cannula treatment in acute hypoxemic respiratory failure (AHRF) patients, the relationship between the ROX index and the mortality remains unclear. Therefore, a retrospective cohort study was conducted to evaluate the ability of the ROX index to predict mortality risk in patients with AHRF. METHOD: Patients diagnosed with AHRF were extracted from the MIMIC-IV database and divided into four groups based on the ROX index quartiles. The primary outcome was 28-day mortality, while in-hospital mortality and follow-up mortality were secondary outcomes. To investigate the association between ROX index and mortality in AHRF patients, restricted cubic spline curve and COX proportional risk regression were utilized. RESULT: A non-linear association (L-shaped) has been observed between the ROX index and mortality rate. When the ROX index is below 8.28, there is a notable decline in the 28-day mortality risk of patients as the ROX index increases (HR per SD, 0.858 [95%CI 0.794-0.928] P < 0.001). When the ROX index is above 8.28, no significant association was found between the ROX index and 28-day mortality. In contrast to the Q1 group, the mortality rates in the Q2, Q3, and Q4 groups had a substantial reduction (Q1 vs. Q2: HR, 0.749 [0.590-0.950] P = 0.017; Q3: HR, 0.711 [0.558-0.906] P = 0.006; Q4: HR, 0.641 [0.495-0.830] P < 0.001). CONCLUSION: The ROX index serves as a valuable predictor of mortality risk in adult patients with AHRF, and that a lower ROX index is substantially associated with an increase in mortality.


Cannula , Respiratory Insufficiency , Adult , Humans , Retrospective Studies , Hospital Mortality , Administration, Intranasal , Databases, Factual , Respiratory Insufficiency/diagnosis , Respiratory Insufficiency/therapy , Oxygen Inhalation Therapy
7.
Biochem Pharmacol ; 223: 116113, 2024 May.
Article En | MEDLINE | ID: mdl-38460907

Glioma is one of the most common primary malignant tumors of the central nervous system. Temozolomide (TMZ) is the only effective chemotherapeutic agent, but it easily develops resistance and has unsatisfactory efficacy. Consequently, there is an urgent need to develop safe and effective compounds for glioma treatment. The cytotoxicity of 30 candidate compounds to glioma cells was detected by the CCK-8 assay. Daurisoline (DAS) was selected for further investigation due to its potent anti-glioma effects. Our study revealed that DAS induced glioma cell apoptosis through increasing caspase-3/6/9 activity. DAS significantly inhibited the proliferation of glioma cells by inducing G1-phase cell cycle arrest. Meanwhile, DAS remarkably suppressed the migration and invasion of glioma cells by regulating epithelial-mesenchymal transition. Mechanistically, our results revealed that DAS impaired the autophagic flux of glioma cells at a late stage by mediating the PI3K/AKT/mTOR pathway. DAS could inhibit TMZ-induced autophagy and then significantly promote TMZ chemosensitivity. Nude mice xenograft model revealed that DAS could restrain glioma proliferation and promote TMZ chemosensitivity. Thus, DAS is a potential anti-glioma drug that can improve glioma sensitivity to TMZ and provide a new therapeutic strategy for glioma in chemoresistance.


Benzylisoquinolines , Brain Neoplasms , Glioma , Mice , Animals , Humans , Temozolomide/pharmacology , Temozolomide/therapeutic use , Proto-Oncogene Proteins c-akt/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Mice, Nude , Brain Neoplasms/metabolism , Glioma/pathology , TOR Serine-Threonine Kinases/metabolism , Autophagy , Cell Line, Tumor , Apoptosis , Drug Resistance, Neoplasm
8.
Dalton Trans ; 53(13): 6063-6069, 2024 Mar 26.
Article En | MEDLINE | ID: mdl-38477327

A new layered metal sulfide, namely (C6H15N3)1.3(NH4)1.5H1.5In3SnS8 (1, C6H15N3 = N-(2-aminoethyl) piperazine), has been solvothermally synthesized and characterized. Compound 1 crystallizes in the monoclinic space group C2/c. Its structure features a two-dimensional layer of {In3SnS8}n3n- with the (4,4) topology net, which is formed by interlinking supertetrahedral T2 clusters as secondary building units. Band structure calculations revealed that 1 had a band gap of 2.7 eV. The photoelectric response of 1 showed steady and reversible on/off cycles with an "on" state of 121.13 nA cm-2. Moreover, the activation of 1 by replacing the sluggish organic cations with harder K+ ions endowed the material with improved adsorption performances for Sr2+ ions from aqueous solutions.

9.
J Cell Mol Med ; 28(7): e18221, 2024 Apr.
Article En | MEDLINE | ID: mdl-38509759

Gliomas are the most common tumours in the central nervous system. In the present study, we aimed to find a promising anti-glioma compound and investigate the underlying molecular mechanism. Glioma cells were subjected to the 50 candidate compounds at a final concentration of 10 µM for 72 h, and CCK-8 was used to evaluate their cytotoxicity. NPS-2143, an antagonist of calcium-sensing receptor (CASR), was selected for further study due to its potent cytotoxicity to glioma cells. Our results showed that NPS-2143 could inhibit the proliferation of glioma cells and induce G1 phase cell cycle arrest. Meanwhile, NPS-2143 could induce glioma cell apoptosis by increasing the caspase-3/6/9 activity. NPS-2143 impaired the immigration and invasion ability of glioma cells by regulating the epithelial-mesenchymal transition process. Mechanically, NPS-2143 could inhibit autophagy by mediating the AKT-mTOR pathway. Bioinformatic analysis showed that the prognosis of glioma patients with low expression of CASR mRNA was better than those with high expression of CASR mRNA. Gene set enrichment analysis showed that CASR was associated with cell adhesion molecules and lysosomes in glioma. The nude mice xenograft model showed NPS-2143 could suppress glioma growth in vivo. In conclusion, NPS-2143 can suppress the glioma progression by inhibiting autophagy.


Glioma , Naphthalenes , Proto-Oncogene Proteins c-akt , Animals , Humans , Mice , Apoptosis , Autophagy , Cell Line, Tumor , Cell Proliferation , Glioma/drug therapy , Glioma/genetics , Glioma/metabolism , Mice, Nude , Proto-Oncogene Proteins c-akt/metabolism , RNA, Messenger/genetics , TOR Serine-Threonine Kinases/metabolism , Naphthalenes/pharmacology
10.
Sci Adv ; 10(10): eadm7565, 2024 Mar 08.
Article En | MEDLINE | ID: mdl-38446887

Given the important advantages of the mid-infrared optical range (2.5 to 25 µm) for biomedical sensing, optical communications, and molecular spectroscopy, extending quantum information technology to this region is highly attractive. However, the development of mid-infrared quantum information technology is still in its infancy. Here, we report on the generation of a time-energy entangled photon pair in the mid-infrared wavelength band. By using frequency upconversion detection technology, we observe the two-photon Hong-Ou-Mandel interference and demonstrate the time-energy entanglement between twin photons at 3082 nm via the Franson-type interferometer, verifying the indistinguishability and nonlocality of the photons. This work is very promising for future applications of optical quantum technology in the mid-infrared band, which will bring more opportunities in the fields of quantum communication, precision sensing, and imaging.

11.
J Hepatocell Carcinoma ; 11: 285-304, 2024.
Article En | MEDLINE | ID: mdl-38344425

Objective: Thermal ablation is a commonly used therapy for hepatocellular carcinoma (HCC). Nevertheless, inadequate ablation can lead to the survival of residual HCC, potentially causing rapid progression. The underlying mechanisms for this remain unclear. This study explores the molecular mechanism responsible for the rapid progression of residual HCC. Methods: We established an animal model of inadequate ablation in BALB/c nude mice and identified a key transcriptional regulator through high-throughput sequencing. Subsequently, we conducted further investigations on RAD21. We evaluated the expression and clinical significance of RAD21 in HCC and studied its impact on HCC cell function through various assays, including CCK-8, wound healing, Transwell migration and invasion. In vitro experiments established an incomplete ablation model verifying RAD21 expression and function. Using ChIP-seq, we determined potential molecules regulated by RAD21 and investigated how RAD21 influences residual tumor development. Results: High RAD21 expression in HCC was confirmed and correlated with low tumor cell differentiation, tumor growth, and portal vein thrombosis. Silencing RAD21 inhibited the migration, invasion, and proliferation significantly in liver cancer cells. Patients with high RAD21 levels showed elevated multiple inhibitory immune checkpoint levels and a lower response rate to immune drugs. Heat treatment intensified the malignant behavior of liver cancer cells, resulting in increased migration, invasion, and proliferation. After subjecting it to heat treatment, the results indicated elevated RAD21 levels in HCC. Differentially expressed molecules regulated by RAD21 following incomplete ablation were primarily associated with the VEGF signaling pathway, focal adhesion, angiogenesis, and hepatocyte growth factor receptor signaling pathway etc. Conclusion: The upregulation of RAD21 expression after incomplete ablation may play a crucial role in the rapid development of residual tumors and could serve as a novel therapeutic target.

12.
World J Gastroenterol ; 30(5): 471-484, 2024 Feb 07.
Article En | MEDLINE | ID: mdl-38414587

BACKGROUND: Primary sclerosing cholangitis (PSC) is characterized by chronic inflammation and it predisposes to cholangiocarcinoma due to lack of effective treatment options. Recombinant adeno-associated virus (rAAV) provides a promising platform for gene therapy on such kinds of diseases. A microRNA (miRNA) let-7a has been reported to be associated with the progress of PSC but the potential therapeutic implication of inhibition of let-7a on PSC has not been evaluated. AIM: To investigate the therapeutic effects of inhibition of a miRNA let-7a transferred by recombinant adeno-associated virus 8 (rAAV8) on a xenobiotic-induced mouse model of sclerosing cholangitis. METHODS: A xenobiotic-induced mouse model of sclerosing cholangitis was induced by 0.1% 3,5-Diethoxycarbonyl-1,4-Dihydrocollidine (DDC) feeding for 2 wk or 6 wk. A single dose of rAAV8-mediated anti-let-7a-5p sponges or scramble control was injected in vivo into mice onset of DDC feeding. Upon sacrifice, the liver and the serum were collected from each mouse. The hepatobiliary injuries, hepatic inflammation and fibrosis were evaluated. The targets of let-7a-5p and downstream molecule NF-κB were detected using Western blot. RESULTS: rAAV8-mediated anti-let-7a-5p sponges can depress the expression of let-7a-5p in mice after DDC feeding for 2 wk or 6 wk. The reduced expression of let-7a-5p can alleviate hepato-biliary injuries indicated by serum markers, and prevent the proliferation of cholangiocytes and biliary fibrosis. Furthermore, inhibition of let-7a mediated by rAAV8 can increase the expression of potential target molecules such as suppressor of cytokine signaling 1 and Dectin1, which consequently inhibit of NF-κB-mediated hepatic inflammation. CONCLUSION: Our study demonstrates that a rAAV8 vector designed for liver-specific inhibition of let-7a-5p can potently ameliorate symptoms in a xenobiotic-induced mouse model of sclerosing cholangitis, which provides a possible clinical translation of PSC of human.


Cholangitis, Sclerosing , MicroRNAs , Humans , Mice , Animals , Cholangitis, Sclerosing/chemically induced , Cholangitis, Sclerosing/genetics , Cholangitis, Sclerosing/therapy , MicroRNAs/genetics , Dependovirus/genetics , Liver Cirrhosis/pathology , NF-kappa B , Xenobiotics/adverse effects , Fibrosis , Disease Models, Animal , Inflammation
13.
J Ovarian Res ; 17(1): 50, 2024 Feb 23.
Article En | MEDLINE | ID: mdl-38395907

BACKGROUND: Individual patients with ovarian cancer show remarkably different prognosis. Present prognostic models for ovarian cancer mainly focus on clinico-pathological parameters, so quantifiable prognostic markers at molecular level are urgently needed. Platelets contribute to ovarian cancer progression, but have not been considered as biomarkers likely due to their instability. Here, we aimed to search for a stable prognostic marker from platelet-treated ovarian cancer cells, and explore its functions and mechanisms. METHODS: Microarrays analysis was done with platelet-treated SKOV-3 ovarian cancer cells. Relevant studies were searched in the Gene Expression Omnibus (GEO) database. The candidate genes were determined by differentially expressed genes (DEGs), Venn diagram drawing, protein-protein interaction (PPI) network, Cox proportional hazards model and Kaplan-Meier analysis. The expression of TGFBI in clinical samples was assessed by immunehistochemical staining (IHC), and the association of TGFBI levels with the clinic-pathological characteristics and prognosis in ovarian cancer patients was evaluated by univariate and multivariate analysis. The functions of TGFBI were predicted using data from TCGA, and validated by in vitro and in vivo experiments. The mechanism exploration was performed based on proteomic analysis, molecular docking and intervention study. RESULTS: TGFBI was significantly higher expressed in the platelet-treated ovarian cancer cells. An analysis of bioinformatics data revealed that increased expression of TGFBI led to significant decrease of overall survival (OS), progression-free survival (PFS) and post-progression survival (PPS) in ovarian cancer patients. Tissue microarray results showed that TGFBI was an independent factor for ovarian cancer, and TGFBI expression predict poor prognosis. Functionally, TGFBI affected the migration and invasion of ovarian cancer cells by regulation of epithelial mesenchymal transition (EMT) markers (CDH1 and CDH2) and extracellular matrix (ECM) degradation proteins (MMP-2). Mechanistically, TGFBI phosphorylated PI3K and Akt by combining integrin αvß3. CONCLUSIONS: We found out TGFBI as a novel prognostic indicator for ovarian cancer patients. TGFBI could promote metastasis in ovarian cancer by EMT induction and ECM remodeling, which might be associated with the activation of integrin αvß3-PI3K-Akt signaling pathway.


Integrin alphaVbeta3 , Ovarian Neoplasms , Transforming Growth Factor beta , Female , Humans , Extracellular Matrix Proteins/metabolism , Molecular Docking Simulation , Ovarian Neoplasms/genetics , Ovarian Neoplasms/metabolism , Ovarian Neoplasms/pathology , Phosphatidylinositol 3-Kinases/metabolism , Prognosis , Proteomics , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction , Transforming Growth Factor beta/metabolism
14.
Phys Chem Chem Phys ; 26(4): 3008-3019, 2024 Jan 24.
Article En | MEDLINE | ID: mdl-38179673

Rhenium sulfide (ReS2) has emerged as a promising two-dimensional material, demonstrating broad-spectrum visible absorption properties that make it highly relevant for diverse optoelectronic applications. Manipulating and optimizing the pathway of photogenerated carriers play a pivotal role in enhancing the efficiency of charge separation and transfer in novel semiconductor composites. This study focuses on the strategic construction of a semiconductor heterostructure by synthesizing ZnO on vacancy-containing ReS2 (VRe-ReS2) through chemical bonding processes. The ingeniously engineered built-in electric field within the heterostructure effectively suppresses the recombination of photogenerated electron-hole pairs. A direct and well-established interfacial connection between VRe-ReS2 and ZnO is achieved through a robust Zn-S bond. This distinctive bond configuration leads to enhanced nonlinear optical conversion efficiency, attributed to shortened carrier migration distances and accelerated charge transfer rates. Furthermore, theoretical calculations unveil the superior chemical interactions between Re vacancies and sulfide moieties, facilitating the formation of Zn-S bonds. The photoluminescence (PL) intensity is increased by the formation of VRe-ReS2 and ZnO heterostructure and the PL quantum yield of VRe-ReS2 is improved. The intricate impact of the Zn-S bond on the nonlinear absorption behavior of the VRe-ReS2@ZnO heterostructure is systematically investigated using femtosecond Z-scan techniques. The charge transfer from ZnO to ReS2 defect levels induces a transition from saturable absorption to reverse saturable absorption in the VRe-ReS2@ZnO heterostructure. Transient absorption measurements further confirm the presence of the Zn-S bond between the interfaces, as evidenced by the prolonged relaxation time (τ3) in the VRe-ReS2@ZnO heterostructure. This study offers valuable insights into the rational construction of heterojunctions through tailored interfacial bonding and surface/interface charge transfer pathways. These endeavors facilitate the modulation of electron transfer dynamics, ultimately yielding superior nonlinear optical conversion efficiency and effective charge regulation in optoelectronic functional materials.

15.
Nanoscale ; 16(4): 1865-1879, 2024 Jan 25.
Article En | MEDLINE | ID: mdl-38168696

Systematic interface and defect engineering strategies have been demonstrated to be an effective way to modulate the electron transfer and nonlinear absorption properties in semiconductor heterojunctions. However, the role played by defects and interfacial strain in electron transfer at the interface of the MoX2 (X = Se, S, Te)@ZnO heterojunction remains poorly understood. Herein, using the MoX2@ZnO heterojunction, we reveal that vacancies play a critical role in the interfacial electron transfer of heterojunctions. Specifically, we present the defect and interface engineering of the MoX2@ZnO heterojunction for controlled charge transfer and electron excitation-relaxation. The experimental characterization combined with first-principles calculations showed that the presence of defects promoted the transport of photogenerated carriers at the heterojunction interface, thereby inhibiting their rapid recombination. The DFT calculation confirmed that the electron band structure, density of states and charge density distribution in the system changed after the formation of Mo-O bonds. On the basis of defects and interfacial stress and the effective charge transfer, the MoX2@ZnO heterojunction exhibited excellent excitation and emission behaviors. The nonlinear optical regulation behavior of TMDs is expected to be realized with the help of the defects and interface/surface synergistically modulated effect of ZnO nanoparticles. The local strain generation on the MoX2@ZnO heterojunction boundary provides a new method for the design of new heterogeneous materials and will be of great significance to investigate the contact physical behavior and application of metals and two-dimensional (2D) semiconductors. This work provides some inspiration for the construction of heterojunctions with rich defects and surface/interface charge transfer channels to promote tunable electron transfer dynamics, thereby achieving a good nonlinear optical conversion efficiency and efficient charge separation in optoelectronic functional materials.

16.
Poult Sci ; 103(3): 103417, 2024 Mar.
Article En | MEDLINE | ID: mdl-38218114

Intestinal microbiota regulates the host metabolism, including fat metabolism and muscle development in mammals; however, studies on the interactions between the gut microbiome and in chickens with respect to fat metabolism and muscle development are still rare. We established a germ-free (GF) chicken model to determine the transcriptomes and metabolomes of GF and specific-pathogen-free (SPF) chickens. Transcriptome analysis showed 1,282 differentially expressed genes (DEGs) in GF and SPF chickens. The expression levels of some genes related to muscle formation were very high in SPF chickens but low in GF chickens, suggesting that GF chickens had poorer muscle development ability. In contrast, the expression levels of some fat synthesis-related genes were very low in SPF chickens but high in GF chickens, suggesting that GF chickens had a more potent fat-synthesizing ability. Metabolome analysis revealed 62 differentially expressed metabolites (DEMs) in GF and SPF chickens, of which 35 were upregulated and 27 were downregulated. Furthermore, the Pearson correlation coefficient (PCC) was calculated, and an interaction network was constructed to visualize the crosstalk between the genes, metabolites, and gut microbiota in GF and SPF chickens. The top 10 gut microbiota were positively correlated with lipid metabolism including13(S)-HpODE and 9(S)-HpOTrE, and genes related to muscle development, while were negatively correlated with genes related to fat synthesis. In conclusion, this study indicated that chicken intestinal microbiota regulate host metabolism, inhibit fat synthesis, and may promote muscle development.


Chickens , Microbiota , Animals , Chickens/genetics , Multiomics , Muscles , Transcriptome , Mammals
20.
Wideochir Inne Tech Maloinwazyjne ; 18(3): 401-409, 2023 Sep.
Article En | MEDLINE | ID: mdl-37868290

Introduction: Computed tomography (CT)-guided liquid material (LM) and hook-wire (HW) are usually localized for pulmonary nodules (PNs) before video-assisted thoracic surgery (VATS) resection, but the relative advantages of these 2 techniques remain uncertain. Aim: This meta-analysis was conceived to juxtapose the efficacy and safety of HW localization (HWL) and LM localization (LML), both guided by CT, for the preoperative localization of PNs. Material and methods: The PubMed, Web of Science, and Wanfang databases were searched to identify relevant studies published as of March 2023, after which pooled analyses of study outcomes were conducted. Results: A total of 7 studies were included in this meta-analysis from 142 relevant studies. These 7 studies included 551 patients (583 PNs) with CT-guided HWL and 551 patients (612 PNs) with LML. The successful localization rate was significantly higher in the LM group (LMG) than in the HW group (HWG) (p = 0.002). The LMG also exhibited significantly lower pooled total complication and lung haemorrhage rates than the HWG (p = 0.007 and 0.00001, respectively). Pooled localization duration, pneumothorax rates, and VATS procedure duration were comparable in both groups (p = 0.45, 0.15, and 0.74, respectively). Furthermore, the pooled postoperative hospital stay was significantly shorter in the LMG than in the HWG (p = 0.009). Significant heterogeneity was detected in the endpoints of localization duration and pneumothorax rate (I2 = 93% and 66%, respectively). Conclusions: CT-guided LML is safer and more successful than HWL for patients with PNs before VATS resection.

...