Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Front Psychiatry ; 15: 1337101, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38374975

RESUMEN

Background: Autism Spectrum Disorders (ASD) are a collection of neurodevelopmental diseases characterized by poor social interaction and communication, a limited range of interests, and stereotyped behavior. High-functioning autism (HFA) indicates a subgroup of individuals with autism who possess cognitive and/or language skills that are within the average to above-normal range for their age. Transcutaneous auricular vagus nerve stimulation (taVNS) holds promise in children with HFA. However, few studies have used randomized controlled trials to validate the effectiveness of taVNS. Therefore, in this study, we intend to provide a study protocol to examine the therapeutic effects of taVNS in individuals diagnosed with HFA and to investigate the process of brain network remodeling in individuals with ASD using functional imaging techniques to observe alterations in large-scale neural networks. Methods and design: We planned to employ a randomized, double-blind experimental design, including 40 children receiving sham stimulation and 40 children receiving real stimulation. We will assess clinical scales and perform functional imaging examinations before and after the stimulation. Additionally, we will include age- and gender-matched healthy children as controls and conduct functional imaging examinations. We plan first to observe the therapeutic effects of taVNS. Furthermore, we will observe the impact of taVNS stimulation on the brain network. Discussion: taVNS was a low-risk, easy-to-administer, low-cost, and portable option to modulate the vagus system. taVNS may improve the social performance of HFA. Changes in the network properties of the large-scale brain network may be related to the efficacy of taVNS. Clinical trial registration: http://www.chictr.org.cn, identifier ChiCTR2300074035.

2.
Opt Express ; 25(13): 15468-15480, 2017 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-28788971

RESUMEN

Software-defined elastic optical networks (SD-EONs) provide operators more flexibility to customize their optical infrastructures dynamically. By leveraging infrastructure-as-a-service (IaaS), virtual SD-EONs (vSD-EONs) can be realized to further enhance the adaptivity of SD-EONs and shorten the time-to-market of new services. In this paper, we design and demonstrate the building and operating of quality-of-service (QoS) aware survivable vSD-EONs that are equipped with transparent data plane (DP) resiliency. Specifically, when slicing a vSD-EON, our network hypervisor (NHV) chooses to use "1:1" virtual link (VL) protection or on-demand VL remapping as the DP restoration scheme, according to the service-level agreement (SLA) between the vSD-EON's operator and the infrastructure provider (InP). Then, during an actual substrate link (SL) failure, the NHV realizes automatic DP restoration that is transparent to the controllers of vSD-EONs. We build a network testbed to demonstrate the creation of QoS-aware survivable vSD-EONs, the activation of lightpaths in the vSD-EONs to support upper-layer applications, and the automatic and simultaneous QoS-aware DP restorations during an SL failure. The experimental results indicate that our vSD-EON slicing system can build QoS-aware survivable vSD-EONs on-demand, operate them to set up lightpaths for carrying real application traffic, and facilitate differentiated DP restorations during SL failures to recover the vSD-EONs' services according to their SLAs.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA