Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 162
Filtrar
1.
J Control Release ; 374: 154-170, 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39127448

RESUMEN

To realize high-quality vascularized bone regeneration, we developed a multifunctional hydrogel (SHPP-ZB) by incorporating BMP-2@ZIF-8/PEG-NH2 nanoparticles (NPs) into a sodium alginate/hydroxyapatite/polyvinyl alcohol hydrogel loaded with PDGF-BB, allowing for the sequential release of angiogenic and osteogenic growth factors (GFs) during bone repair. ZIF-8 served as a protective host for BMP-2 from degradation, ensuring high encapsulation efficiency and long-term bioactivity. The SHPP-ZB hydrogel exhibited enhanced mechanical strength and injectability, making it suitable for complex bone defects. It provided a swelling interface for tissue interlocking and the early release of Zn2+ and tannin acid (TA) to exert antioxidant and antibacterial effects, followed by the sequential release of angiogenic and osteogenic GFs to promote high-quality vascularized bone regeneration. In vitro experiments demonstrated the superior angiogenic and osteogenic properties of SHPP-ZB compared to other groups. In vivo experiments indicated that the sequential delivery of GFs via SHPP-ZB hydrogel could improve vascularized bone regeneration. Further, RNA sequencing analysis of regenerative bone tissue revealed that SHPP-ZB hydrogel promoted vascularized bone regeneration by regulating JUN, MAPK, Wnt, and calcium signaling pathways in vivo. This study presented a promising approach for efficient vascularized bone regeneration in large-scale bone defects.

2.
Regen Biomater ; 11: rbae044, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38962115

RESUMEN

Polypropylene (PP) mesh is commonly used in abdominal wall repair due to its ability to reduce the risk of organ damage, infections and other complications. However, the PP mesh often leads to adhesion formation and does not promote functional tissue repair. In this study, we synthesized one kind of aldehyde Bletilla striata polysaccharide (BSPA) modified chitosan (CS) hydrogel based on Schiff base reaction. The hydrogel exhibited a porous network structure, a highly hydrophilic surface and good biocompatibility. We wrapped the PP mesh inside the hydrogel and evaluated the performance of the resulting composites in a bilateral 1 × 1.5 cm abdominal wall defect model in rats. The results of gross observation, histological staining and immunohistochemical staining demonstrated the positive impact of the CS hydrogel on anti-adhesion and wound healing effects. Notably, the addition of BSPA to the CS hydrogel further improved the performance of the composites in vivo, promoting wound healing by enhancing collagen deposition and capillary rearrangement. This study suggested that the BSPA-modified CS hydrogel significantly promoted the anti-adhesion, anti-inflammatory and pro-angiogenesis properties of PP meshes during the healing process. Overall, this work offers a novel approach to the design of abdominal wall repair patches.

3.
Biosens Bioelectron ; 263: 116578, 2024 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-39038398

RESUMEN

Peripheral nerve injury (PNI) poses a significant public health issue, often leading to muscle atrophy and persistent neuropathic pain, which can drastically impact the quality of life for patients. Electrical stimulation represents an effective and non-pharmacological treatment to promote nerve regeneration. Yet, the postoperative application of electrical stimulation remains a challenge. Here, we propose a fully biodegradable, self-powered nerve guidance conduit (NGC) based on dissolvable zinc-molybdenum batteries. The conduit can offer topographic guidance for nerve regeneration and deliver sustained electrical cues between both ends of a transected nerve stump, extending beyond the surgical window. Schwann cell proliferation and adenosine triphosphate (ATP) production are enhanced by the introduction of the zinc-molybdenum batteries. In rodent models with 10-mm sciatic nerve damage, the device effectively enhances nerve regeneration and motor function recovery. This study offers innovative strategies for creating biodegradable and electroactive devices that hold important promise to optimize therapeutic outcomes for nerve regeneration.


Asunto(s)
Regeneración Nerviosa , Traumatismos de los Nervios Periféricos , Nervio Ciático , Zinc , Animales , Traumatismos de los Nervios Periféricos/terapia , Zinc/química , Nervio Ciático/fisiología , Nervio Ciático/lesiones , Ratas , Suministros de Energía Eléctrica , Molibdeno/química , Células de Schwann , Ratas Sprague-Dawley , Humanos , Regeneración Tisular Dirigida/instrumentación , Regeneración Tisular Dirigida/métodos , Técnicas Biosensibles , Implantes Absorbibles
4.
Proc Natl Acad Sci U S A ; 121(30): e2404164121, 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-39012823

RESUMEN

The development of advanced neural modulation techniques is crucial to neuroscience research and neuroengineering applications. Recently, optical-based, nongenetic modulation approaches have been actively investigated to remotely interrogate the nervous system with high precision. Here, we show that a thin-film, silicon (Si)-based diode device is capable to bidirectionally regulate in vitro and in vivo neural activities upon adjusted illumination. When exposed to high-power and short-pulsed light, the Si diode generates photothermal effects, evoking neuron depolarization and enhancing intracellular calcium dynamics. Conversely, low-power and long-pulsed light on the Si diode hyperpolarizes neurons and reduces calcium activities. Furthermore, the Si diode film mounted on the brain of living mice can activate or suppress cortical activities under varied irradiation conditions. The presented material and device strategies reveal an innovated optoelectronic interface for precise neural modulations.


Asunto(s)
Neuronas , Optogenética , Silicio , Animales , Silicio/química , Neuronas/fisiología , Ratones , Optogenética/métodos , Calcio/metabolismo , Luz , Encéfalo/fisiología
5.
Life Sci ; 351: 122862, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-38917872

RESUMEN

The primary and initial manifestations of hypertension encompass arterial hypoelasticity and histiocyte senescence. Oxidative stress plays a pivotal role in the progression of senescence. Elevated intracellular oxidative stress levels will directly induce cell damage, disrupt normal physiological signal transduction, which can cause mitochondrial dysfunction to accelerate the process of senescence. Alizarin, an anthraquinone active ingredient isolated from Rubia cordifolia L., has a variety of pharmacological effects, including antioxidant, anti-inflammatory and anti-platelet. Nevertheless, its potential in lowering blood pressure (BP) and mitigating hypertension-induced vascular senescence remains uncertain. In this study, we used spontaneously hypertensive rats (SHR) and human umbilical vein endothelial cells (HUVECs) to establish a model of vascular senescence in hypertension. Our aim was to elucidate the mechanisms underpinning the vascular protective effects of Alizarin. By assessing systolic blood pressure (SBP) and diastolic blood pressure (DBP), H&E staining, SA-ß-Gal staining, vascular function, oxidative stress levels, calcium ion concentration and mitochondrial membrane potential, we found that Alizarin not only restored SBP and increased endothelium-dependent relaxation (EDR) in SHR, but also inhibited oxidative stress-induced mitochondrial damage and significantly delayed the vascular senescence effect in hypertension, and the mechanism may be related to the activation of VEGFR2/eNOS signaling pathway.


Asunto(s)
Antraquinonas , Antihipertensivos , Senescencia Celular , Células Endoteliales de la Vena Umbilical Humana , Hipertensión , Mitocondrias , Óxido Nítrico Sintasa de Tipo III , Estrés Oxidativo , Ratas Endogámicas SHR , Transducción de Señal , Receptor 2 de Factores de Crecimiento Endotelial Vascular , Estrés Oxidativo/efectos de los fármacos , Animales , Humanos , Ratas , Mitocondrias/metabolismo , Mitocondrias/efectos de los fármacos , Antraquinonas/farmacología , Senescencia Celular/efectos de los fármacos , Antihipertensivos/farmacología , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Óxido Nítrico Sintasa de Tipo III/metabolismo , Hipertensión/metabolismo , Hipertensión/tratamiento farmacológico , Receptor 2 de Factores de Crecimiento Endotelial Vascular/metabolismo , Transducción de Señal/efectos de los fármacos , Masculino , Presión Sanguínea/efectos de los fármacos , Ratas Endogámicas WKY
6.
Nat Commun ; 15(1): 4721, 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38830884

RESUMEN

Optoelectronic neural interfaces can leverage the photovoltaic effect to convert light into electrical current, inducing charge redistribution and enabling nerve stimulation. This method offers a non-genetic and remote approach for neuromodulation. Developing biodegradable and efficient optoelectronic neural interfaces is important for achieving transdermal stimulation while minimizing infection risks associated with device retrieval, thereby maximizing therapeutic outcomes. We propose a biodegradable, flexible, and miniaturized silicon-based neural interface capable of transdermal optoelectronic stimulation for neural modulation and nerve regeneration. Enhancing the device interface with thin-film molybdenum significantly improves the efficacy of neural stimulation. Our study demonstrates successful activation of the sciatic nerve in rodents and the facial nerve in rabbits. Moreover, transdermal optoelectronic stimulation accelerates the functional recovery of injured facial nerves.


Asunto(s)
Regeneración Nerviosa , Nervio Ciático , Animales , Conejos , Regeneración Nerviosa/fisiología , Regeneración Nerviosa/efectos de los fármacos , Nervio Ciático/fisiología , Nervio Facial/fisiología , Nervios Periféricos/fisiología , Masculino , Ratas , Silicio/química , Ratas Sprague-Dawley , Estimulación Eléctrica
7.
Chirality ; 36(5): e23669, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38747136

RESUMEN

The aim of this study was to investigate the chiral inversion and the stereoselective pharmacokinetic profiles of desmethyl-phencynonate hydrochloride after administration of the single isomer and its racemate to beagle dogs. A liquid chromatography with tandem mass spectrometry (LC-MS/MS) method was established for determination of the stereoisomers on chiral columns in beagle dog plasma, which met all the requirements. The chiral inversion in dogs of the desmethyl-phencynonate hydrochloride were studied after administration of the single isomer or the racemic modification. The stereoselective pharmacokinetic profiles of the desmethyl-phencynonate hydrochloride were studied by assays for simultaneous isomers after administration of the racemic modification. The results showed that the absorption of the R-configuration dosed as the single isomer was higher than it dosed as the racemic modification. The AUC(0-t), AUC(0-∞), and Cmax of the S-configuration were much higher than those of R-configuration after oral administration of the racemic desmethyl-phencynonate hydrochloride. The chiral inversion of desmethyl-phencynonate isomers could not occur in dogs after administration of the R-configuration.


Asunto(s)
Espectrometría de Masas en Tándem , Animales , Perros , Estereoisomerismo , Espectrometría de Masas en Tándem/métodos , Masculino , Cromatografía Liquida/métodos , Administración Oral , Área Bajo la Curva
8.
Biomater Sci ; 12(11): 2801-2830, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38683241

RESUMEN

Repair of bone defects exceeding a critical size has been always a big challenge in clinical practice. Tissue engineering has exhibited great potential to effectively repair the defects with less adverse effect than traditional bone grafts, during which how to induce vascularized bone formation has been recognized as a critical issue. Therefore, recently many studies have been launched to attempt to promote osteogenesis-angiogenesis coupling. This review summarized comprehensively and explored in depth current efforts to ameliorate the coupling of osteogenesis and angiogenesis from four aspects, namely the optimization of scaffold components, modification of scaffold structures, loading strategies for bioactive substances, and employment tricks for appropriate cells. Especially, the advantages and the possible reasons for every strategy, as well as the challenges, were elaborated. Furthermore, some promising research directions were proposed based on an in-depth analysis of the current research. This paper will hopefully spark new ideas and approaches for more efficiently boosting new vascularized bone formations.


Asunto(s)
Huesos , Neovascularización Fisiológica , Osteogénesis , Ingeniería de Tejidos , Andamios del Tejido , Osteogénesis/efectos de los fármacos , Humanos , Neovascularización Fisiológica/efectos de los fármacos , Animales , Andamios del Tejido/química , Angiogénesis
9.
Adv Healthc Mater ; : e2303289, 2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38640468

RESUMEN

Existing methods for studying neural circuits and treating neurological disorders are typically based on physical and chemical cues to manipulate and record neural activities. These approaches often involve predefined, rigid, and unchangeable signal patterns, which cannot be adjusted in real time according to the patient's condition or neural activities. With the continuous development of neural interfaces, conducting in vivo research on adaptive and modifiable treatments for neurological diseases and neural circuits is now possible. In this review, current and potential integration of various modalities to achieve precise, closed-loop modulation, and sensing in neural systems are summarized. Advanced materials, devices, or systems that generate or detect electrical, magnetic, optical, acoustic, or chemical signals are highlighted and utilized to interact with neural cells, tissues, and networks for closed-loop interrogation. Further, the significance of developing closed-loop techniques for diagnostics and treatment of neurological disorders such as epilepsy, depression, rehabilitation of spinal cord injury patients, and exploration of brain neural circuit functionality is elaborated.

10.
Phytomedicine ; 128: 155557, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38547622

RESUMEN

BACKGROUND: In this study, we investigated the protective effects of alizarin (AZ) on endothelial dysfunction (ED). AZ has inhibition of the type 2 diabetes mellitus (T2DM)-induced synthesis of thrombospondin 1 (THBS1). Adenosine 5'-monophosphate- activated protein kinase (AMPK), particularly AMPKα2 isoform, plays a critical role in maintaining cardiac homeostasis. PURPOSE: The aim of this study was to investigate the ameliorative effect of AZ on vascular injury caused by T2DM and to reveal the potential mechanism of AZ in high glucose (HG)-stimulated human umbilical vein endothelial cells (HUVECs) and diabetic model rats. STUDY DESIGN: HUVECs, rats and AMPK-/- transgenic mice were used to investigate the mitigating effects of AZ on vascular endothelial dysfunction caused by T2DM and its in vitro and in vivo molecular mechanisms. METHODS: In type 2 diabetes mellitus rats and HUVECs, the inhibitory effect of alizarin on THBS1 synthesis was verified by immunohistochemistry (IHC), immunofluorescence (IF) and Western blot (WB) so that increase endothelial nitric oxide synthase (eNOS) content in vitro and in vivo. In addition, we verified protein interactions with immunoprecipitation (IP). To probe the mechanism, we also performed AMPKα2 transfection. AMPK's pivotal role in AZ-mediated prevention against T2DM-induced vascular endothelial dysfunction was tested using AMPKα2-/- mice. RESULTS: We first demonstrated that THBS1 and AMPK are targets of AZ. In T2DM, THBS1 was robustly induced by high glucose and inhibited by AZ. Furthermore, AZ activates the AMPK signaling pathway, and recoupled eNOS in stressed endothelial cells which plays a protective role in vascular endothelial dysfunction. CONCLUSIONS: The main finding of this study is that AZ can play a role in different pathways of vascular injury due to T2DM. Mechanistically, alizarin inhibits the increase in THBS1 protein synthesis after high glucose induction and activates AMPKα2, which increases NO release from eNOS, which is essential in the prevention of vascular endothelial dysfunction caused by T2DM.


Asunto(s)
Proteínas Quinasas Activadas por AMP , Antraquinonas , Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Células Endoteliales de la Vena Umbilical Humana , Óxido Nítrico Sintasa de Tipo III , Transducción de Señal , Trombospondina 1 , Animales , Humanos , Antraquinonas/farmacología , Transducción de Señal/efectos de los fármacos , Proteínas Quinasas Activadas por AMP/metabolismo , Trombospondina 1/metabolismo , Óxido Nítrico Sintasa de Tipo III/metabolismo , Masculino , Ratas , Ratones , Ratas Sprague-Dawley , Endotelio Vascular/efectos de los fármacos , Glucosa/metabolismo , Ratones Endogámicos C57BL
11.
Adv Healthc Mater ; : e2303316, 2024 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-38323711

RESUMEN

Electrical neuromodulation plays a pivotal role in enhancing patient outcomes among individuals suffering from neurological disorders. Implantable neural interfaces are vital components of the electrical neuromodulation system to ensure desirable performance; However, conventional devices are limited to a single function and are constructed with bulky and rigid materials, which often leads to mechanical incompatibility with soft tissue and an inability to adapt to the dynamic and complex 3D structures of biological systems. In addition, current implantable neural interfaces utilized in clinical settings primarily rely on wire-based techniques, which are associated with complications such as increased risk of infection, limited positioning options, and movement restrictions. Here, the state-of-art applications of electrical neuromodulation are presented. Material schemes and device structures that can be employed to develop robust and multifunctional neural interfaces, including flexibility, stretchability, biodegradability, self-healing, self-rolling, or morphing are discussed. Furthermore, multimodal wireless neuromodulation techniques, including optoelectronics, mechano-electrics, magnetoelectrics, inductive coupling, and electrochemically based self-powered devices are reviewed. In the end, future perspectives are given.

12.
ACS Nano ; 18(8): 6298-6313, 2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38345574

RESUMEN

Noise-induced hearing loss (NIHL) often accompanies cochlear synaptopathy, which can be potentially reversed to restore hearing. However, there has been little success in achieving complete recovery of sensorineural deafness using nearly noninvasive middle ear drug delivery before. Here, we present a study demonstrating the efficacy of a middle ear delivery system employing brain-derived neurotrophic factor (BDNF)-poly-(dl-lactic acid-co-glycolic acid) (PLGA)-loaded hydrogel in reversing synaptopathy and restoring hearing function in a mouse model with NIHL. The mouse model achieved using the single noise exposure (NE, 115 dBL, 4 h) exhibited an average 20 dBL elevation of hearing thresholds with intact cochlear hair cells but a loss of ribbon synapses as the primary cause of hearing impairment. We developed a BDNF-PLGA-loaded thermosensitive hydrogel, which was administered via a single controllable injection into the tympanic cavity of noise-exposed mice, allowing its presence in the middle ear for a duration of 2 weeks. This intervention resulted in complete restoration of NIHL at frequencies of click, 4, 8, 16, and 32 kHz. Moreover, the cochlear ribbon synapses exhibited significant recovery, whereas other cochlear components (hair cells and auditory nerves) remained unchanged. Additionally, the cochlea of NE treated mice revealed activation of tropomyosin receptor kinase B (TRKB) signaling upon exposure to BDNF. These findings demonstrate a controllable and minimally invasive therapeutic approach that utilizes a BDNF-PLGA-loaded hydrogel to restore NIHL by specifically repairing cochlear synaptopathy. This tailored middle ear delivery system holds great promise for achieving ideal clinical outcomes in the treatment of NIHL and cochlear synaptopathy.


Asunto(s)
Sordera , Glicolatos , Pérdida Auditiva Provocada por Ruido , Animales , Ratones , Factor Neurotrófico Derivado del Encéfalo/uso terapéutico , Pérdida de Audición Oculta , Hidrogeles , Estimulación Acústica/efectos adversos , Umbral Auditivo , Potenciales Evocados Auditivos del Tronco Encefálico/fisiología , Pérdida Auditiva Provocada por Ruido/etiología , Sordera/complicaciones , Oído Medio
13.
ACS Nano ; 18(5): 3969-3995, 2024 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-38271679

RESUMEN

Implantable chemical sensors built with flexible and biodegradable materials exhibit immense potential for seamless integration with biological systems by matching the mechanical properties of soft tissues and eliminating device retraction procedures. Compared with conventional hospital-based blood tests, implantable chemical sensors have the capability to achieve real-time monitoring with high accuracy of important biomarkers such as metabolites, neurotransmitters, and proteins, offering valuable insights for clinical applications. These innovative sensors could provide essential information for preventive diagnosis and effective intervention. To date, despite extensive research on flexible and bioresorbable materials for implantable electronics, the development of chemical sensors has faced several challenges related to materials and device design, resulting in only a limited number of successful accomplishments. This review highlights recent advancements in implantable chemical sensors based on flexible and biodegradable materials, encompassing their sensing strategies, materials strategies, and geometric configurations. The following discussions focus on demonstrated detection of various objects including ions, small molecules, and a few examples of macromolecules using flexible and/or bioresorbable implantable chemical sensors. Finally, we will present current challenges and explore potential future directions.


Asunto(s)
Dispositivos Electrónicos Vestibles , Prótesis e Implantes , Electrónica , Polímeros/química
14.
Adv Healthc Mater ; 13(3): e2302128, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37922434

RESUMEN

Peripheral nerve injuries (PNI) can lead to mitochondrial dysfunction and energy depletion within the affected microenvironment. The objective is to investigate the potential of transplanting mitochondria to reshape the neural regeneration microenvironment. High-purity functional mitochondria with an intact structure are extracted from human umbilical cord-derived mesenchymal stem cells (hUCMSCs) using the Dounce homogenization combined with ultracentrifugation. Results show that when hUCMSC-derived mitochondria (hUCMSC-Mitos) are cocultured with Schwann cells (SCs), they promote the proliferation, migration, and respiratory capacity of SCs. Acellular nerve allografts (ANAs) have shown promise in nerve regeneration, however, their therapeutic effect is not satisfactory enough. The incorporation of hUCMSC-Mitos within ANAs has the potential to remodel the regenerative microenvironment. This approach demonstrates satisfactory outcomes in terms of tissue regeneration and functional recovery. Particularly, the use of metabolomics and bioenergetic profiling is used for the first time to analyze the energy metabolism microenvironment after PNI. This remodeling occurs through the enhancement of the tricarboxylic acid cycle and the regulation of associated metabolites, resulting in increased energy synthesis. Overall, the hUCMSC-Mito-loaded ANAs exhibit high functionality to promote nerve regeneration, providing a novel regenerative strategy based on improving energy metabolism for neural repair.


Asunto(s)
Células Madre Mesenquimatosas , Tejido Nervioso , Traumatismos de los Nervios Periféricos , Humanos , Nervio Ciático , Células de Schwann , Traumatismos de los Nervios Periféricos/terapia , Matriz Extracelular , Regeneración Nerviosa/fisiología
15.
Life Sci ; 339: 122382, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38154610

RESUMEN

AIMS: Endothelial dysfunction (ED) is the initial cause of atherosclerosis (AS) and an early marker of many cardiovascular diseases (CVD). Citronellal (CT), a monoterpenoid natural product extracted from grass plant Citronella, has been shown to have anti-thrombotic, anti-hypertensive and anti-diabetic cardiomyopathy activities. The aim of this study is to investigate the effects of citronellal on vascular endothelial dysfunction and the underlying mechanisms. MATERIALS AND METHODS: The left common carotid artery was subjected to one-time balloon injury to cause vascular endothelial injury, and the AS model was established by feeding with high-fat diet. Use of HUVECs H2O2 treatment induced HUVECs oxidative stress damage model. The blood lipid level, histopathology, Western blot, immunohistochemistry, RT-PCR, ELISA and in situ fluorescence hybridization of common carotid artery tissues and HUVECs were studied. KEY FINDINGS: CT significantly reduced vascular plate area and endothelial lipid and cholesterol deposition in the common carotid artery of mice in a dose-dependent manner. CT increased the expression of activated protein 2α (AP-2α/TFAP2A) and circRNA_102979, and inhibited the ectopic expression level of miR-133a. However, the constructed lentivirus with AP-2α silencing and circRNA_102979 silencing reversed this phenomenon. SIGNIFICANCE: The current study verifies CT can increase the expression levels of AP-2α and circRNA_102979 in vascular endothelium, increase the adsorption effect of circRNA_102979 on miR-133a and relieve the inhibitory effect of miR-133a on target genes, thereby alleviating AS-induced ED.


Asunto(s)
Monoterpenos Acíclicos , Aldehídos , Aterosclerosis , MicroARNs , Ratones , Animales , MicroARNs/metabolismo , ARN Circular , Peróxido de Hidrógeno , Aterosclerosis/metabolismo , Lípidos , Apoptosis
16.
Pestic Biochem Physiol ; 197: 105678, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38072535

RESUMEN

The orientation of the oligophagous cone-feeding moth Dioryctria abietella (Lepidoptera: Pyralidae) to host plants primarily relies on olfactory-related proteins, particularly those candidates highly expressed in antennae. Here, through a combination of expression profile, ligand-binding assay, molecular docking and site-directed mutagenesis strategies, we characterized the chemosensory protein (CSP) gene family in D. abietella. Quantitative real-time PCR (qPCR) analyses revealed the detectable expression of all 22 DabiCSPs in the antennae, of which seven genes were significantly enriched in this tissue. In addition, the majority of the genes (19/22 relatives) had the expression in at least one reproductive tissue. In the interactions of four antenna-dominant DabiCSPs and different chemical classes, DabiCSP1 was broadly tuned to 27 plant-derived odors, three man-made insecticides and one herbicide with high affinities (Ki < 6.60 µM). By contrast, three other DabiCSPs (DabiCSP4, CSP6 and CSP17) exhibited a narrow odor binding spectrum, in response to six compounds for each protein. Our mutation analyses combined with molecular docking simulations and binding assays further identified four key residues (Tyr25, Thr26, Ile65 and Val69) in the interactions of DabiCSP1 and ligands, of which binding abilities of this protein to 12, 15, 16 and three compounds were significantly decreased compared to the wildtype protein, respectively. Our study reveals different odor binding spectra of four DabiCSPs enriched in antennae and identifies key residues responsible for the binding of DabiCSP1 and potentially active compounds for the control of this pest.


Asunto(s)
Mariposas Nocturnas , Humanos , Animales , Simulación del Acoplamiento Molecular , Ligandos , Mariposas Nocturnas/metabolismo , Odorantes , Proteínas de Insectos/metabolismo , Antenas de Artrópodos/metabolismo
17.
Sci Rep ; 13(1): 22243, 2023 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-38097666

RESUMEN

Pyruvate kinase M2 (PKM2), a subtype of pyruvate kinase, plays a crucial role as a key enzyme in the final step of glycolysis. It is involved in regulating the tumor microenvironment and accelerating tumor progression. However, the relationship between PKM2 expression and the prognosis and immune infiltration remains unclear in lung cancer. In this study, we analyzed PKM2 expression in pan-cancer, and investigated its association with prognosis and immune cell infiltration of lung cancer by using multiple online databases, including Gent2, Tumor Immune Estimation Resource (TIMER), Gene Expression Profiling Interactive Analysis (GEPIA), PrognoScan, Kaplan-Meier plotter, and The Human Protein Atlas (HPA). The results showed that PKM2 expression is elevated in tumor tissues compared with the adjacent normal tissues of most cancers, including lung cancer. Prognostic analysis indicated that high expression of PKM2 was associated with poorer prognosis in overall lung cancer patients, especially in lung adenocarcinoma (LUAD). Notably, PKM2 exhibited a strong correlation with B cells and CD4+ T cells in LUAD; and with B cells, CD8+ T cells, CD4+ cells, and macrophages in lung squamous cell carcinoma (LUSC). Furthermore, PKM2 expression displayed a significant negative correlation with the expression of immune cell markers in both LUAD and LUSC. These findings suggested that PKM2 could serve as a promising prognostic biomarker for lung cancer and provided insights into its essential role in modulating the immune cell infiltration.


Asunto(s)
Adenocarcinoma del Pulmón , Carcinoma de Pulmón de Células no Pequeñas , Carcinoma de Células Escamosas , Neoplasias Pulmonares , Humanos , Adenocarcinoma del Pulmón/genética , Biomarcadores de Tumor/genética , Carcinoma de Pulmón de Células no Pequeñas/genética , Neoplasias Pulmonares/genética , Pronóstico , Piruvato Quinasa/genética , Microambiente Tumoral/genética
18.
Adv Healthc Mater ; 12(32): e2301859, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37750601

RESUMEN

Peripheral nerve injury represents one of the most common types of traumatic damage, severely impairing motor and sensory functions, and posttraumatic nerve regeneration remains a major challenge. Electrical cues are critical bioactive factors that promote nerve regrowth, and bioartificial scaffolds incorporating conductive materials to enhance the endogenous electrical field have been demonstrated to be effective. The utilization of fully biodegradable scaffolds can eliminate material residues, and circumvent the need for secondary retrieval procedures. Here, a fully bioresorbable and conductive nerve scaffold integrating N-type silicon (Si) membranes is proposed, which can deliver both structural guidance and electrical cues for the repair of nerve defects. The entire scaffold is fully biodegradable, and the introduction of N-type Si can significantly promote the proliferation and production of neurotrophic factors of Schwann cells and enhance the calcium activity of dorsal root ganglion (DRG) neurons. The conductive scaffolds enable accelerated nerve regeneration and motor functional recovery in rodents with sciatic nerve transection injuries. This work sheds light on the advancement of bioresorbable and electrically active materials to achieve desirable neural interfaces and improved therapeutic outcomes, offering essential strategies for regenerative medicine.


Asunto(s)
Traumatismos de los Nervios Periféricos , Silicio , Humanos , Implantes Absorbibles , Neuronas , Regeneración Nerviosa/fisiología , Traumatismos de los Nervios Periféricos/terapia , Ganglios Espinales , Nervio Ciático/fisiología , Andamios del Tejido/química
19.
Am J Pathol ; 193(12): 2047-2065, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37741453

RESUMEN

Toxoplasma gondii infection in pregnant women may cause fetal anomalies; however, the underlying mechanisms remain unclear. The current study investigated whether T. gondii induces pyroptosis in human placental cells and the underlying mechanisms. Human placental trophoblast (BeWo and HTR-8/SVneo) and amniotic (WISH) cells were infected with T. gondii, and then reactive oxygen species (ROS) production, cathepsin B (CatB) release, inflammasome activation, and pyroptosis induction were evaluated. The molecular mechanisms of these effects were investigated by treating the cells with ROS scavengers, a CatB inhibitor, or inflammasome-specific siRNA. T. gondii infection induced ROS generation and CatB release into the cytosol in placental cells but decreased mitochondrial membrane potential. T. gondii-infected human placental cells and villi exhibited NLRP1, NLRP3, NLRC4, and AIM2 inflammasome activation and subsequent pyroptosis induction, as evidenced by increased expression of ASC, cleaved caspase-1, and mature IL-1ß and gasdermin D cleavage. In addition to inflammasome activation and pyroptosis induction, adverse pregnancy outcome was shown in a T. gondii-infected pregnant mouse model. Administration of ROS scavengers, CatB inhibitor, or inflammasome-specific siRNA into T. gondii-infected cells reversed these effects. Collectively, these findings show that T. gondii induces NLRP1/NLRP3/NLRC4/AIM2 inflammasome-dependent caspase-1-mediated pyroptosis via induction of ROS production and CatB activation in placental cells. This mechanism may play an important role in inducing cell injury in congenital toxoplasmosis.


Asunto(s)
Inflamasomas , Toxoplasma , Ratones , Animales , Humanos , Femenino , Embarazo , Inflamasomas/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Piroptosis , Trofoblastos/metabolismo , Catepsina B/metabolismo , Catepsina B/farmacología , Placenta/metabolismo , ARN Interferente Pequeño , Caspasas/metabolismo , Proteínas de Unión al Calcio/metabolismo , Proteínas Adaptadoras de Señalización CARD/metabolismo , Proteínas NLR/metabolismo
20.
Adv Healthc Mater ; 12(29): e2302059, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37610041

RESUMEN

Bioadhesive hydrogels have attracted considerable attention as innovative materials in medical interventions and human-machine interface engineering. Despite significant advances in their application, it remains critical to develop adhesive hydrogels that meet the requirements for biocompatibility, biodegradability, long-term strong adhesion, and efficient drug delivery vehicles in moist conditions. A biocompatible, biodegradable, soft, and stretchable hydrogel made from a combination of a biopolymer (unmodified natural gelatin) and stretchable biodegradable poly(ethylene glycol) diacrylate is proposed to achieve durable and tough adhesion and explore its use for convenient and effective intranasal hemostasis and drug administration. Desirable hemostasis efficacy and enhanced therapeutic outcomes for allergic rhinitis are accomplished. Biodegradation enables the spontaneous removal of materials without causing secondary damage and minimizes medical waste. Preliminary trials on human subjects provide an essential foundation for practical applications. This work elucidates material strategies for biodegradable adhesive hydrogels, which are critical to achieving robust material interfaces and advanced drug delivery platforms for novel clinical treatments.


Asunto(s)
Hidrogeles , Rinitis Alérgica , Humanos , Hidrogeles/uso terapéutico , Adhesivos , Epistaxis , Adherencias Tisulares
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA