Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Immunol ; 15: 1380220, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38799458

RESUMEN

African swine fever (ASF) is an acute hemorrhagic and devastating infectious disease affecting domestic pigs and wild boars. It is caused by the African swine fever virus (ASFV), which is characterized by genetic diversity and sophisticated immune evasion strategies. To facilitate infection, ASFV encodes multiple proteins to antagonize host innate immune responses, thereby contributing to viral virulence and pathogenicity. The molecular mechanisms employed by ASFV-encoded proteins to modulate host antiviral responses have not been comprehensively elucidated. In this study, it was observed that the ASFV MGF505-6R protein, a member of the multigene family 505 (MGF505), effectively suppressed the activation of the interferon-beta (IFN-ß) promoter, leading to reduced mRNA levels of antiviral genes. Additional evidence has revealed that MGF505-6R antagonizes the cGAS-STING signaling pathway by interacting with the stimulator of interferon genes (STING) for degradation in the autophagy-lysosomal pathway. The domain mapping revealed that the N-terminal region (1-260aa) of MGF505-6R is the primary domain responsible for interacting with STING, while the CTT domain of STING is crucial for its interaction with MGF505-6R. Furthermore, MGF505-6R also inhibits the activation of STING by reducing the K63-linked polyubiquitination of STING, leading to the disruption of STING oligomerization and TANK binding kinase 1 (TBK1) recruitment, thereby impairing the phosphorylation and nuclear translocation of interferon regulatory factor 3 (IRF3). Collectively, our study elucidates a novel strategy developed by ASFV MGF505-6R to counteract host innate immune responses. This discovery may offer valuable insights for further exploration of ASFV immune evasion mechanisms and antiviral strategies.


Asunto(s)
Virus de la Fiebre Porcina Africana , Fiebre Porcina Africana , Proteínas de la Membrana , Proteínas Virales , Animales , Virus de la Fiebre Porcina Africana/inmunología , Virus de la Fiebre Porcina Africana/genética , Porcinos , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/inmunología , Fiebre Porcina Africana/inmunología , Fiebre Porcina Africana/virología , Fiebre Porcina Africana/metabolismo , Proteínas Virales/inmunología , Proteínas Virales/metabolismo , Proteínas Virales/genética , Humanos , Inmunidad Innata , Interferón Tipo I/metabolismo , Interferón Tipo I/inmunología , Factor 3 Regulador del Interferón/metabolismo , Factor 3 Regulador del Interferón/inmunología , Transducción de Señal , Proteolisis , Células HEK293 , Interacciones Huésped-Patógeno/inmunología , Evasión Inmune , Interferón beta/metabolismo , Interferón beta/inmunología , Interferón beta/genética
2.
J Virol ; 97(7): e0068623, 2023 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-37367489

RESUMEN

Foot-and-mouth disease (FMD) is an acute, highly contagious disease of cloven-hoofed animals caused by FMD virus (FMDV). Currently, the molecular pathogenesis of FMDV infection remains poorly understood. Here, we demonstrated that FMDV infection induced gasdermin E (GSDME)-mediated pyroptosis independent of caspase-3 activity. Further studies showed that FMDV 3Cpro cleaved porcine GSDME (pGSDME) at the Q271-G272 junction adjacent to the cleavage site (D268-A269) of porcine caspase-3 (pCASP3). The inhibition of enzyme activity of 3Cpro failed to cleave pGSDME and induce pyroptosis. Furthermore, overexpression of pCASP3 or 3Cpro-mediated cleavage fragment pGSDME-NT was sufficient to induce pyroptosis. Moreover, the knockdown of GSDME attenuated the pyroptosis caused by FMDV infection. Our study reveals a novel mechanism of pyroptosis induced by FMDV infection and might provide new insights into the pathogenesis of FMDV and the design of antiviral drugs. IMPORTANCE Although FMDV is an important virulent infectious disease virus, few reports have addressed its relationship with pyroptosis or pyroptosis factors, and most studies focus on the immune escape mechanism of FMDV. GSDME (DFNA5) was initially identified as being associated with deafness disorders. Accumulating evidence indicates that GSDME is a key executioner for pyroptosis. Here, we first demonstrate that pGSDME is a novel cleavage substrate of FMDV 3Cpro and can induce pyroptosis. Thus, this study reveals a previously unrecognized novel mechanism of pyroptosis induced by FMDV infection and might provide new insights into the design of anti-FMDV therapies and the mechanisms of pyroptosis induced by other picornavirus infections.


Asunto(s)
Virus de la Fiebre Aftosa , Fiebre Aftosa , Animales , Porcinos , Virus de la Fiebre Aftosa/metabolismo , Caspasa 3/metabolismo , Cisteína Endopeptidasas/metabolismo , Gasderminas , Piroptosis , Proteínas Virales/metabolismo
3.
Nanomedicine (Lond) ; 18(1): 5-18, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36789970

RESUMEN

Aim: To develop a vaccine candidate for Japanese encephalitis virus (JEV), for which an effective and safe vaccine is urgently needed. Materials & methods: A vaccine candidate based on domain III of the JEV envelope protein and lumazine synthase (EDIII-LS) was prepared by coupling multivalent ED III to a self-assembling nanoparticle of LS through genetic fusion and self-assembly. Results: High enrichment of ED III was achieved based on the self-assembly of an EDIII-LS polymer. EDIII-LS strongly promoted dendritic cells' internalization and presentation compared with ED III monomer. The cellular and humoral immune responses provoked by EDIII-LS were remarkably higher than those caused by ED III in mice, and conferred complete protection against JEV challenge. Conclusion: The study of ED III-based nanoparticles suggests an effective approach against JEV.


Asunto(s)
Virus de la Encefalitis Japonesa (Especie) , Encefalitis Japonesa , Vacunas , Animales , Ratones , Virus de la Encefalitis Japonesa (Especie)/genética , Dominios Proteicos , Anticuerpos Neutralizantes/metabolismo , Encefalitis Japonesa/prevención & control , Anticuerpos Antivirales/metabolismo , Inmunidad , Ratones Endogámicos BALB C
4.
J Virol ; 96(17): e0112122, 2022 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-36000840

RESUMEN

Seneca Valley virus (SVV) is a new pathogen associated with porcine idiopathic vesicular disease (PIVD) in recent years. However, SVV-host interaction is still unclear. In this study, through LC-MS/MS analysis and coimmunoprecipitation analysis, DHX30 was identified as a 3Cpro-interacting protein. 3Cpro mediated the cleavage of DHX30 at a specific site, which depends on its protease activity. Further study showed that DHX30 was an intrinsic antiviral factor against SVV that was dependent on its helicase activity. DHX30 functioned as a viral-RNA binding protein that inhibited SVV replication at the early stage of viral infection. RIP-seq showed comparatively higher coverage depth at SVV 5'UTR, but the distribution across SVV RNA suggested that the interaction had low specificity. DHX30 expression strongly inhibited double-stranded RNA (dsRNA) production. Interestingly, DHX30 was determined to interact with 3D in an SVV RNA-dependent manner. Thus, DHX30 negatively regulated SVV propagation by blocking viral RNA synthesis, presumably by participating in the viral replication complex. IMPORTANCE DHX30, an RNA helicase, is identified as a 3Cpro-interacting protein regulating Seneca Valley virus (SVV) replication dependent on its helicase activity. DHX30 functioned as a viral-RNA binding protein that inhibited SVV replication at the early stage of virus infection. DHX30 expression strongly inhibited double-stranded RNA (dsRNA) production. In addition, 3Cpro abolished DHX30 antiviral effects by inducing DHX30 cleavage. Thus, DHX30 is an intrinsic antiviral factor that inhibits SVV replication.


Asunto(s)
Proteasas Virales 3C , Picornaviridae , Proteolisis , ARN Helicasas , Proteasas Virales 3C/metabolismo , Animales , Cromatografía Liquida , Inmunoprecipitación , Picornaviridae/enzimología , Picornaviridae/genética , Picornaviridae/crecimiento & desarrollo , Picornaviridae/fisiología , Unión Proteica , ARN Helicasas/antagonistas & inhibidores , ARN Helicasas/metabolismo , ARN Bicatenario/biosíntesis , ARN Viral/biosíntesis , Porcinos/virología , Enfermedad Vesicular Porcina/virología , Espectrometría de Masas en Tándem , Replicación Viral
5.
Front Cell Infect Microbiol ; 12: 852473, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35782136

RESUMEN

Porcine sapelovirus (PSV) is the causative pathogen of reproductive obstacles, acute diarrhea, respiratory distress, or severe polioencephalomyelitis in swine. Nevertheless, the pathogenicity and pathogenic mechanism of PSV infection are not fully understood, which hinders disease prevention and control. In this study, we found that PSV was sensitive to type I interferon (IFN-ß). However, PSV could not activate the IFN-ß promoter and induce IFN-ß mRNA expression, indicating that PSV has evolved an effective mechanism to block IFN-ß production. Further study showed that PSV inhibited the production of IFN-ß by cleaving mitochondrial antiviral signaling (MAVS) and degrading melanoma differentiation-associated gene 5 (MDA5) and TANK-binding kinase 1 (TBK1) through viral 3Cpro. In addition, our study demonstrated that PSV 3Cpro degrades MDA5 and TBK1 through its protease activity and cleaves MAVS through the caspase pathway. Collectively, our results revealed that PSV inhibits the production of type I interferon to escape host antiviral immunity through cleaving and degrading the adaptor molecules.


Asunto(s)
Interferón Tipo I , Picornaviridae , Animales , Antivirales , Cisteína Endopeptidasas/metabolismo , Interferón Tipo I/metabolismo , Interferón beta/metabolismo , Porcinos , Proteínas Virales/metabolismo
6.
J Immunol ; 207(1): 189-199, 2021 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-34183365

RESUMEN

Seneca Valley virus (SVV), a newly emerging virus belonging to the Picornaviridae family, has caused vesicular disease in the swine industry. However, the molecular mechanism of viral pathogenesis remains poorly understood. This study revealed that SVV infection could induce pyroptosis in SK6 cells in a caspase-dependent and -independent manner. SVV may inhibit caspase-1 activation at late infection because of 3Cpro cleavage of NLRP3, which counteracted pyroptosis activation. Further study showed that 3Cpro targeted porcine gasdermin D (pGSDMD) for cleavage through its protease activity. 3Cpro cleaved porcine GSDMD (pGSDMD) at two sites, glutamine 193 (Q193) and glutamine 277 (Q277), and Q277 was close to the caspase-1-induced pGSDMD cleavage site. pGSDMD1-277 triggered cell death, which was similar to N-terminal fragment produced by caspase-1 cleavage of pGSDMD, and other fragments exhibited no significant inhibitory effects on cellular activity. Ectopic expression of pGSDMD converted 3Cpro-induced apoptosis to pyroptosis in 293T cells. Interestingly, 3Cpro did not cleave mouse GSDMD or human GSDMD. And, both pGSDMD and pGSDMD1-277 exhibited bactericidal activities in vivo. Nevertheless, pGSDMD cannot kill bacteria in vitro. Taken together, our results reveal a novel pyroptosis activation manner produced by viral protease cleavage of pGSDMD, which may provide an important insight into the pathogenesis of SVV and cancer therapy.


Asunto(s)
Proteasas Virales 3C/inmunología , Proteínas de Unión a Fosfato/inmunología , Picornaviridae/enzimología , Animales , Células Cultivadas , Células HEK293 , Humanos , Piroptosis/inmunología , Porcinos
7.
Autophagy ; 17(11): 3763-3775, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-33719859

RESUMEN

Macroautophagy/autophagy plays a critical role in antiviral immunity through targeting viruses and initiating host immune responses. The receptor protein, SQSTM1/p62 (sequestosome 1), plays a vital role in selective autophagy. It serves as a receptor targeting ubiquitinated proteins or pathogens to phagophores for degradation. In this study, we explored the reciprocal regulation between selective autophagy receptor SQSTM1 and Seneca Valley virus (SVV). SVV infection induced autophagy. Autophagy promoted SVV infection in pig cells but played opposite functions in human cells. Overexpression of SQSTM1 decreased viral protein production and reduced viral titers. Further study showed that SQSTM1 interacted with SVV VP1 and VP3 independent of its UBA domain. SQSTM1 targeted SVV VP1 and VP3 to phagophores for degradation to inhibit viral replication. To counteract this, SVV evolved strategies to circumvent the host autophagic machinery to promote viral replication. SVV 3Cpro targeted the receptor SQSTM1 for cleavage at glutamic acid 355, glutamine 392, and glutamine 395 and abolished its capacity to mediate selective autophagy. At the same time, the 3Cpro-mediated SQSTM1 cleavage products lost the ability to inhibit viral propagation. Collectively, our results provide evidence for selective autophagy in host against viruses and reveal potential viral strategies to evade autophagic machinery for successful pathogenesis.Abbreviations: Baf.A1: bafilomycin A1; Co-IP: co-immunoprecipitation; hpi: h post-infection; LIR: LC3-interacting region; MAP1LC3B/LC3B: microtubule-associated protein 1 light chain 3 beta; MOI: multiplicity of infection; PB1: N-terminal Phox/Bem1p; Rap.: rapamycin; Seneca Valley virus: SVV; SQSTM1/p62: sequestosome 1; SQSTM1-N355: residues 1 to 355 of SQSTM1; SQSTM1-C355: residues 355 to 478 of SQSTM1; SQSTM1-N392: residues 1 to 392 of SQSTM1; SQSTM1-C392: residues 392 to 478 of SQSTM1; SQSTM1-N388: residues 1 to 388 of SQSTM1; SQSTM1-N397: residues 1 to 397 of SQSTM1; UBA: ubiquitin association; Ubi: ubiquitin.


Asunto(s)
Autofagia , Picornaviridae/fisiología , Proteína Sequestosoma-1/metabolismo , Proteínas Estructurales Virales/metabolismo , Replicación Viral , Animales , Línea Celular , Células HEK293 , Humanos , Proteína Sequestosoma-1/fisiología , Especificidad de la Especie , Porcinos , Proteínas Estructurales Virales/fisiología
8.
Front Immunol ; 11: 577838, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33133097

RESUMEN

Stress granules (SGs) are the sites of mRNA storage and related to the regulation of mRNA translation, which are dynamic structures in response to various environmental stresses and viral infections. Seneca Valley virus (SVV), an oncolytic RNA virus belonging to Picornaviridae family, can cause vesicular disease (VD) indistinguished from foot-and-mouth disease (FMD) and other pig VDs. In this study, we found that SVV induced SG formation in the early stage of infection in a PKR-eIF2α dependent manner, as demonstrated by the recruitment of marker proteins of G3BP1 and eIF4GI. Surprisingly, we found that downregulating SG marker proteins TIA1 or G3BP1, or expressing an eIF2α non-phosphorylatable mutant inhibited SG formation, but this inhibition of transient SG formation had no significant effect on SVV propagation. Depletion of G3BP1 significantly attenuated the activation of NF-κB signaling pathway. In addition, we found that SVV inhibited SG formation at the late stage of infection and 3C protease was essential for the inhibition depending on its enzyme activity. Furthermore, we also found that 3C protease blocked the SG formation by disrupting eIF4GI-G3BP1 interaction. Overall, our results demonstrate that SVV induces transient SG formation in an eIF2α phosphorylation and PKR-dependent manner, and that 3C protease inhibits SG formation by interfering eIF4GI-G3BP1 interaction.


Asunto(s)
Proteasas Virales 3C/metabolismo , Gránulos Citoplasmáticos/metabolismo , ADN Helicasas/metabolismo , Factor 4G Eucariótico de Iniciación/metabolismo , Picornaviridae/enzimología , Proteínas de Unión a Poli-ADP-Ribosa/metabolismo , ARN Helicasas/metabolismo , Proteínas con Motivos de Reconocimiento de ARN/metabolismo , Estrés Fisiológico , Proteasas Virales 3C/genética , Gránulos Citoplasmáticos/virología , ADN Helicasas/genética , Factor 4G Eucariótico de Iniciación/genética , Células HEK293 , Interacciones Huésped-Patógeno , Humanos , Fosforilación , Picornaviridae/genética , Picornaviridae/crecimiento & desarrollo , Proteínas de Unión a Poli-ADP-Ribosa/genética , Unión Proteica , ARN Helicasas/genética , Proteínas con Motivos de Reconocimiento de ARN/genética , Transducción de Señal , Replicación Viral , eIF-2 Quinasa/metabolismo
9.
Virology ; 535: 122-129, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31299488

RESUMEN

Seneca Valley virus (SVV) is a member of the Picornaviridae family, which has been used to treat neuroendocrine cancer. The innate immune system plays an important role in SVV infection. However, few studies have elucidated the relationship between SVV infection and the host's antiviral response. In this study, SVV replication could induce the degradation of RIG-I in HEK-293T, SW620 and SK6 cells. And overexpressing retinoic acid-inducible gene I (RIG-I) could significantly inhibit SVV propagation. The viral protein 2C and 3C were essential for the degradation of RIG-I. Furthermore, 2C and 3C significantly reduced Sev or RIG-I-induced IFN-ß production. Mechanistically, 2C and 3C induced RIG-I degradation through the caspase signaling pathway. Taken together, we demonstrate the antiviral role of RIG-I against SVV and the mechanism by which SVV 2C and 3C weaken the host innate immune system.


Asunto(s)
Proteína 58 DEAD Box/metabolismo , Interacciones Microbiota-Huesped , Evasión Inmune , Interferón Tipo I/antagonistas & inhibidores , Picornaviridae/inmunología , Proteolisis , Proteínas Virales/metabolismo , Línea Celular , Humanos , Picornaviridae/crecimiento & desarrollo , Receptores Inmunológicos , Transducción de Señal , Replicación Viral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...