Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 107
1.
J Cell Mol Med ; 28(10): e18317, 2024 May.
Article En | MEDLINE | ID: mdl-38801409

Euphorbiae Humifusae Herba (EHH) is a pivotal therapeutic agent with diverse pharmacological effects. However, a substantial gap exists in understanding its pharmacological properties and anti-tumour mechanisms. This study aimed to address this gap by exploring EHH's pharmacological properties, identifying NSCLC therapy-associated protein targets, and elucidating how EHH induces mitochondrial disruption in NSCLC cells, offering insights into novel NSCLC treatment strategies. String database was utilized to explore protein-protein interactions. Subsequently, single-cell analysis and multi-omics further unveiled the impact of EHH-targeted genes on the immune microenvironment of NSCLC, as well as their influence on immunotherapeutic responses. Finally, both in vivo and in vitro experiments elucidated the anti-tumour mechanisms of EHH, specifically through the assessment of mitochondrial ROS levels and alterations in mitochondrial membrane potential. EHH exerts its influence through engagement with a cluster of 10 genes, including the apoptotic gene CASP3. This regulatory impact on the immune milieu within NSCLC holds promise as an indicator for predicting responses to immunotherapy. Besides, EHH demonstrated the capability to induce mitochondrial ROS generation and perturbations in mitochondrial membrane potential in NSCLC cells, ultimately leading to mitochondrial dysfunction and consequent apoptosis of tumour cells. EHH induces mitochondrial disruption in NSCLC cells, leading to cell apoptosis to inhibit the progress of NSCLC.


Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Mitochondria , Single-Cell Analysis , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/pathology , Carcinoma, Non-Small-Cell Lung/metabolism , Carcinoma, Non-Small-Cell Lung/drug therapy , Humans , Lung Neoplasms/pathology , Lung Neoplasms/genetics , Lung Neoplasms/metabolism , Lung Neoplasms/drug therapy , Mitochondria/metabolism , Mitochondria/drug effects , Animals , Cell Line, Tumor , Mice , Membrane Potential, Mitochondrial/drug effects , Reactive Oxygen Species/metabolism , Tumor Microenvironment , Apoptosis/drug effects , Gene Expression Regulation, Neoplastic/drug effects , Xenograft Model Antitumor Assays , Drugs, Chinese Herbal/pharmacology , Multiomics
2.
Bioorg Chem ; 147: 107335, 2024 Jun.
Article En | MEDLINE | ID: mdl-38583250

Fifty compounds including seven undescribed (1, 13, 18-20, 30, 31) and forty-three known (2-12, 14-17, 21-29, 32-50) ones were isolated from the extract of the twigs and leaves of Aglaia odorata with anti-neuroinflammatory activities. Their structures were determined by a combination of spectral analysis and calculated spectra (ECD and NMR). Among them, compounds 13-25 were found to possess tertiary amide bonds, with compounds 16, 17, and 19-21 existing detectable cis/trans mixtures in 1H NMR spectrum measured in CDCl3. Specifically, the analysis of the cis-trans isomerization equilibrium of tertiary amides in compounds 19-24 was conducted using NMR spectroscopy and quantum chemical calculations. Bioactivity evaluation showed that the cyclopenta[b]benzofuran derivatives (2-6, 8, 10, 12) could inhibit nitric oxide production at the nanomolar concentration (IC50 values ranging from 2 to 100 nM) in lipopolysaccharide-induced BV-2 cells, which were 413-20670 times greater than that of the positive drug (minocycline, IC50 = 41.34 µM). The cyclopenta[bc]benzopyran derivatives (13-16), diterpenoids (30-35), lignan (40), and flavonoids (45, 47, 49, 50) also demonstrated significant inhibitory activities with IC50 values ranging from 1.74 to 38.44 µM. Furthermore, the in vivo anti-neuroinflammatory effect of rocaglaol (12) was evaluated via immunofluorescence, qRT-PCR, and western blot assays in the LPS-treated mice model. The results showed that rocaglaol (12) attenuated the activation of microglia and decreased the mRNA expression of iNOS, TNF-α, IL-1ß, and IL-6 in the cortex and hippocampus of mice. The mechanistic study suggested that rocaglaol might inhibit the activation of the NF-κB signaling pathway to relieve the neuroinflammatory response.


Aglaia , Lipopolysaccharides , Nitric Oxide , Animals , Mice , Aglaia/chemistry , Lipopolysaccharides/antagonists & inhibitors , Lipopolysaccharides/pharmacology , Nitric Oxide/antagonists & inhibitors , Nitric Oxide/biosynthesis , Nitric Oxide/metabolism , Molecular Structure , Structure-Activity Relationship , Dose-Response Relationship, Drug , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/isolation & purification , Male , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Anti-Inflammatory Agents, Non-Steroidal/chemistry , Anti-Inflammatory Agents, Non-Steroidal/isolation & purification , Benzofurans/pharmacology , Benzofurans/chemistry , Benzofurans/isolation & purification , Cell Line , Plant Leaves/chemistry
3.
Adv Sci (Weinh) ; : e2308045, 2024 Mar 22.
Article En | MEDLINE | ID: mdl-38520088

The regulation of PD-L1 is the key question, which largely determines the outcome of the immune checkpoint inhibitors (ICIs) based therapy. However, besides the transcription level, the protein stability of PD-L1 is closely correlated with its function and has drawn increasing attention. In this study, EZH2 inhibition enhances PD-L1 expression and protein stability, and the deubiquitinase ubiquitin-specific peptidase 22 (USP22) is identified as a key mediator in this process. EZH2 inhibition transcriptionally upregulates USP22 expression, and upregulated USP22 further stabilizes PD-L1. Importantly, a combination of EZH2 inhibitors with anti-PD-1 immune checkpoint blockade therapy improves the tumor microenvironment, enhances sensitivity to immunotherapy, and exerts synergistic anticancer effects. In addition, knocking down USP22 can potentially enhance the therapeutic efficacy of EZH2 inhibitors on colon cancer. These findings unveil the novel role of EZH2 inhibitors in tumor immune evasion by upregulating PD-L1, and this drawback can be compensated by combining ICI immunotherapy. Therefore, these findings provide valuable insights into the EZH2-USP22-PD-L1 regulatory axis, shedding light on the optimization of combining both immune checkpoint blockade and EZH2 inhibitor-based epigenetic therapies to achieve more efficacies and accuracy in cancer treatment.

4.
ACS Med Chem Lett ; 15(2): 230-238, 2024 Feb 08.
Article En | MEDLINE | ID: mdl-38352836

Herein, we disclose a powerful strategy for the functionalization of the antitumor natural alkaloid noscapine by utilizing photoredox/nickel dual-catalytic coupling technology. A small collection of 37 new noscapinoids with diverse (hetero)alkyl and (hetero)cycloalkyl groups and enhanced sp3 character was thus synthesized. Further in vitro antiproliferative activity screening and SAR study enabled the identification of 6o as a novel, potent, and less-toxic anticancer agent. Furthermore, 6o exerts superior cellular activity via an unexpected S-phase arrest mechanism and could significantly induce cell apoptosis in a dose-dependent manner, thereby further highlighting its potential in drug discovery as a promising lead compound.

5.
EMBO Rep ; 25(3): 1208-1232, 2024 Mar.
Article En | MEDLINE | ID: mdl-38291338

Micropeptides encoded by short open reading frames (sORFs) within long noncoding RNAs (lncRNAs) are beginning to be discovered and characterized as regulators of biological and pathological processes. Here, we find that lncRNA Dleu2 encodes a 17-amino-acid micropeptide, which we name Dleu2-17aa, that is abundantly expressed in T cells. Dleu2-17aa promotes inducible regulatory T (iTreg) cell generation by interacting with SMAD Family Member 3 (Smad3) and enhancing its binding to the Foxp3 conserved non-coding DNA sequence 1 (CNS1) region. Importantly, the genetic deletion of Dleu2-17aa in mice by start codon mutation impairs iTreg generation and worsens experimental autoimmune encephalomyelitis (EAE). Conversely, the exogenous supplementation of Dleu2-17aa relieves EAE. Our findings demonstrate an indispensable role of Dleu2-17aa in maintaining immune homeostasis and suggest therapeutic applications for this peptide in treating autoimmune diseases.


Encephalomyelitis, Autoimmune, Experimental , RNA, Long Noncoding , Animals , Mice , Autoimmunity , Peptides/metabolism , RNA, Long Noncoding/genetics , T-Lymphocytes, Regulatory/metabolism
6.
Theranostics ; 14(1): 159-175, 2024.
Article En | MEDLINE | ID: mdl-38164159

Rationale: Ischemic stroke poses a significant health burden with limited treatment options. Lymphocyte Cytosolic Protein 1 (LCP1) facilitates cell migration and immune responses by aiding in actin polymerization, cytoskeletal rearrangements, and phagocytosis. We have demonstrated that the long non-coding RNA (lncRNA) Maclpil silencing in monocyte-derived macrophages (MoDMs) led to LCP1 inhibition, reducing ischemic brain damage. However, the role of LCP1 of MoDMs in ischemic stroke remains unknown. Methods and Results: We investigated the impact of LCP1 on ischemic brain injury and immune cell signaling and metabolism. We found that knockdown of LCP1 in MoDMs demonstrated robust protection against ischemic infarction and improved neurological behaviors in mice. Utilizing the high-dimensional CyTOF technique, we demonstrated that knocking down LCP1 in MoDMs led to a reduction in neuroinflammation and attenuation of lymphopenia, which is linked to immunodepression. It also showed altered immune cell signaling by modulating the phosphorylation levels of key kinases and transcription factors, including p-PLCg2, p-ERK1/2, p-EGFR, p-AKT, and p4E-BP1 as well as transcription factors like p-STAT1, p-STAT3, and p-STAT4. Further bioinformatic analysis indicated that Akt and EGFR are particularly involved in fatty acid metabolism and glycolysis. Indeed, single-cell sequencing analysis confirmed that enrichment of fatty acid and glycolysis metabolism in Lcp1high monocytes/macrophages. Furthermore, Lcp1high cells exhibited enhanced oxidative phosphorylation, chemotaxis, migration, and ATP biosynthesis pathways. In vitro experiments confirmed the role of LCP1 in regulating mitochondrial function and fatty acid uptake. Conclusions: These findings contribute to a deeper understanding of LCP1 in the context of ischemic stroke and provide valuable insights into potential therapeutic strategies targeting LCP1 and metabolic pathways, aiming to attenuating neuroinflammation and lymphopenia.


Brain Injuries , Ischemic Stroke , Lymphopenia , Mice , Animals , Proto-Oncogene Proteins c-akt , Neuroinflammatory Diseases , Macrophages , Signal Transduction , ErbB Receptors , Fatty Acids , Transcription Factors
7.
Cancer Res ; 84(3): 479-492, 2024 02 01.
Article En | MEDLINE | ID: mdl-38095536

Osimertinib is a third-generation covalent EGFR inhibitor that is used in treating non-small cell lung cancer. First-generation EGFR inhibitors were found to elicit pro-differentiation effect on acute myeloid leukemia (AML) cells in preclinical studies, but clinical trials yielded mostly negative results. Here, we report that osimertinib selectively induced apoptosis of CD34+ leukemia stem/progenitor cells but not CD34- cells in EGFR-negative AML and chronic myeloid leukemia (CML). Covalent binding of osimertinib to CD34 at cysteines 199 and 177 and suppression of Src family kinases (SFK) and downstream STAT3 activation contributed to osimertinib-induced cell death. SFK and STAT3 inhibition induced synthetic lethality with osimertinib in primary CD34+ cells. CD34 expression was elevated in AML cells compared with their normal counterparts. Genomic, transcriptomic, and proteomic profiling identified mutation and gene expression signatures of patients with AML with high CD34 expression, and univariate and multivariate analyses indicated the adverse prognostic significance of high expression of CD34. Osimertinib treatment induced responses in AML patient-derived xenograft models that correlated with CD34 expression while sparing normal CD34+ cells. Clinical responses were observed in two patients with CD34high AML who were treated with osimertinib on a compassionate-use basis. These findings reveal the therapeutic potential of osimertinib for treating CD34high AML and CML and describe an EGFR-independent mechanism of osimertinib-induced cell death in myeloid leukemia. SIGNIFICANCE: Osimertinib binds CD34 and selectively kills CD34+ leukemia cells to induce remission in preclinical models and patients with AML with a high percentage of CD34+ blasts, providing therapeutic options for myeloid leukemia patients.


Acrylamides , Aniline Compounds , Carcinoma, Non-Small-Cell Lung , Indoles , Leukemia, Myeloid, Acute , Lung Neoplasms , Pyrimidines , Humans , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/metabolism , Proteomics , Cell Proliferation , Lung Neoplasms/metabolism , Leukemia, Myeloid, Acute/genetics , Myeloid Progenitor Cells , ErbB Receptors/metabolism , Antigens, CD34/metabolism , Neoplastic Stem Cells/metabolism
8.
Circulation ; 149(13): 1004-1015, 2024 03 26.
Article En | MEDLINE | ID: mdl-37886839

BACKGROUND: The adult mammalian heart is incapable of regeneration, whereas a transient regenerative capacity is maintained in the neonatal heart, primarily through the proliferation of preexisting cardiomyocytes. Neonatal heart regeneration after myocardial injury is accompanied by an expansion of cardiac fibroblasts and compositional changes in the extracellular matrix. Whether and how these changes influence cardiomyocyte proliferation and heart regeneration remains to be investigated. METHODS: We used apical resection and myocardial infarction surgical models in neonatal and adult mice to investigate extracellular matrix components involved in heart regeneration after injury. Single-cell RNA sequencing and liquid chromatography-mass spectrometry analyses were used for versican identification. Cardiac fibroblast-specific Vcan deletion was achieved using the mouse strains Col1a2-2A-CreER and Vcanfl/fl. Molecular signaling pathways related to the effects of versican were assessed through Western blot, immunostaining, and quantitative reverse transcription polymerase chain reaction. Cardiac fibrosis and heart function were evaluated by Masson trichrome staining and echocardiography, respectively. RESULTS: Versican, a cardiac fibroblast-derived extracellular matrix component, was upregulated after neonatal myocardial injury and promoted cardiomyocyte proliferation. Conditional knockout of Vcan in cardiac fibroblasts decreased cardiomyocyte proliferation and impaired neonatal heart regeneration. In adult mice, intramyocardial injection of versican after myocardial infarction enhanced cardiomyocyte proliferation, reduced fibrosis, and improved cardiac function. Furthermore, versican augmented the proliferation of human induced pluripotent stem cell-derived cardiomyocytes. Mechanistically, versican activated integrin ß1 and downstream signaling molecules, including ERK1/2 and Akt, thereby promoting cardiomyocyte proliferation and cardiac repair. CONCLUSIONS: Our study identifies versican as a cardiac fibroblast-derived pro-proliferative proteoglycan and clarifies the role of versican in promoting adult cardiac repair. These findings highlight its potential as a therapeutic factor for ischemic heart diseases.


Heart Injuries , Induced Pluripotent Stem Cells , Myocardial Infarction , Animals , Humans , Mice , Animals, Newborn , Cell Proliferation , Heart , Heart Injuries/metabolism , Induced Pluripotent Stem Cells/metabolism , Mammals , Myocytes, Cardiac/metabolism , Regeneration , Versicans/genetics , Versicans/metabolism
9.
J Ethnopharmacol ; 322: 117594, 2024 Mar 25.
Article En | MEDLINE | ID: mdl-38110134

ETHNOPHARMACOLOGICAL RELEVANCE: Plants from the Thymelaeaceae family are widely distributed in tropical and temperate regions, with approximately 113 species used as Traditional Herbals. There are numerous applications for them, such as treating leukemia, AIDS, and liver cancer. It should be noted that around 20% of these plants have shown harmful side effects when used in clinical applications, including solid irritations to the skin and mucous membranes, carcinogenic effects, organ damage, vomiting, and diarrhea. AIM OF THE STUDY: This paper aims to review the toxic side effects, toxic compounds, toxic mechanisms, and detoxification methods of Traditional Herbals in Thymelaeaceae, guiding their safe clinical uses. MATERIALS AND METHODS: This review employed the keywords "Thymelaeaceae," 48 different "genus," 966 "species," and the combination of "toxicity" to identify the medicinal value and toxicity of plants from Thymelaeaceae in scientific databases (Pubmed, SciFinder Scholar, Elsevier, Web of Science, and CNKI). Information relevant to the toxicity of Traditional Herbals from Thymelaeaceae up to June 2023 has been summarized. The plant names have been checked with "World Flora Online" (www.worldfloraonline.org). RESULTS: 28 toxic Traditional Herbals from 13 genera within the Thymelaeaceae family were categorized. Toxicities were summarized at the cellular, animal, and clinical levels. The toxic substances are primarily concentrated in the Daphne L. and Wikstroemia Endl. genera, with terpenes being the main toxic components. The toxicity mechanism is primarily associated with the mitochondrial pathways. Detoxification and enhanced efficacy can be achieved through processing methods such as vinegar-processing and sweat-soaking. CONCLUSIONS: Medicinal plants in the Thymelaeaceae exhibit significant pharmacological activities, such as anti-HIV and anti-tumor effects, indicating a broad potential for application. However, their clinical uses are hindered by their inherent toxicity. Researching the toxic components and mechanisms of these Traditional Herbals and exploring more effective detoxification methods can contribute to unveiling the latent value of these medicinal plants from Thymelaeaceae.


Plants, Medicinal , Thymelaeaceae , Animals , Ethnopharmacology , Phytotherapy , Medicine, Traditional , Plant Extracts/pharmacology , Plants, Medicinal/toxicity , Phytochemicals/therapeutic use
10.
Food Res Int ; 172: 113057, 2023 10.
Article En | MEDLINE | ID: mdl-37689852

The flavor quality of jiupei gradually decreased with the increase of cellar height. In this study, high-throughput sequencing, metabolomics and HS-SPME-GC-MS techniques were used to explore the mechanism of flavor quality decline in upper jiupei in mud sealed cellars. The results showed the total content of flavor compounds increased from 1947.48 mg/L in top-site to 3855.51 mg/L in bottom of the cellar, and 19 differential flavor compounds were identified based on OPLS-DA, mainly including 12 esters such as ethyl hexanoate, ethyl butyrate, propyl hexanoate, hexyl caproate and 5 other substances such as caprylic acid, decanal and nonaldehyde. Lactobacillus, Prevotella and Methanobacterium were dominant genus of bacteria in all of cellars, while Thermomyces, Aspergillus, Pichia, Trichosporon and Rhizopus were the dominant genera of fungi. Oxygen was the key factor causing the quality heterogeneity of flavor substances and microbial communities in jiupei at different depths. Anaerobic micro-pressure sealed cellars (AMSC) method was developed and applied to jiupei fermentation, the difference in oxygen content between top site (5.90 ± 0.62 %) and bottom of the cellar (4.17 ± 0.75 %) in AMSC was smaller than that in mud sealed cellars, there were no significant differences in flavor substances content between top site and bottom of the cellar, and microbial communities showed no significant differences of the four-layer jiupei. This study provides a theoretical support for improving the flavor quality of upper jiupei.


Esters , Oxygen , Fermentation , Gas Chromatography-Mass Spectrometry
11.
Zhonghua Wei Zhong Bing Ji Jiu Yi Xue ; 35(8): 839-843, 2023 Aug.
Article Zh | MEDLINE | ID: mdl-37593863

OBJECTIVE: To investigate the prognostic value of cardiac ultrasound left ventricular ejection fraction (LVEF) on admission in patients with septic cardiomyopathy. METHODS: A retrospective cohort study was conducted. The patients with septic cardiomyopathy hospitalized in the intensive care unit of Zhoupu Hospital Affiliated to Shanghai Health College from January 2019 to March 2023 were enrolled. The general information including gender and age, LVEF on admission, severity of illness scores within 24 hours after admission [acute physiology and chronic health evaluation II (APACHE II) score and sequential organ failure assessment (SOFA) score], procalcitonin (PCT), cardiac biomarkers [N-terminal pro-brain natriuretic peptide (NT-proBNP), cardiac troponin T (cTnT), and MB isoenzyme of creatine kinase (CK-MB)], mitochondria related indicators [aspartate aminotransferase (AST), AST/alanine aminotransferase (ALT) ratio], blood lactate (Lac), the usage of vasoactive drugs and mechanical ventilation, and the prognosis during hospitalization were collected. The differences in above clinical data between the two groups were compared. The variables with statistically significant differences in univariate analysis were incorporated into multivariate Logistic regression analysis to analyze the independent risk factors for death during hospitalization in patients with septic cardiomyopathy. Receiver operator characteristic curve (ROC curve) was drawn to evaluate the prognostic value of LVEF by echocardiography on admission in patients with septic cardiomyopathy during hospitalization. RESULTS: A total of 62 patients were enrolled, including 36 males and 26 females. Thirty-nine cases died and 23 cases survived during hospitalization, and the mortality was 62.90%. Compared with the survival group, the LVEF of patients on admission was lower in the death group [0.51 (0.40, 0.57) vs. 0.56 (0.51, 0.63), P < 0.01], APACHE II score, SOFA score, Lac, NT-proBNP, CK-MB within 24 hours after admission were higher [APACHE II score: 22.18±8.38 vs. 17.39±8.22, SOFA score: 9.90±3.87 vs. 7.09±3.27, Lac (mmol/L): 5.10 (2.63, 11.50) vs. 2.00 (1.40, 5.00), NT-proBNP (µg/L): 5.24 (2.84, 11.29) vs. 2.53 (0.35, 6.63), CK-MB (U/L): 1.88 (0.21, 5.33) vs. 0.17 (0.02, 1.62), all P < 0.05], and the proportion of vasoactive drug application was higher (82.05% vs. 47.83%, P < 0.01). Multivariate Logistic regression analysis showed that LVEF on admission was an independent risk factor for predicting the prognosis of patients with septic cardiomyopathy during hospitalization [odds ratio (OR) = 0.920, 95% confidence interval (95%CI) was 0.855-0.990, P = 0.025]. ROC curve analysis showed that the area under the ROC curve (AUC) of LVEF on admission for predicting the death of patients with septic cardiomyopathy was 0.715 (95%CI was 0.585-0.845, P = 0.005). When LVEF ≤ 0.52, the sensitivity was 73.9%, and the specificity was 61.5%. CONCLUSIONS: The lower cardiac ultrasound LVEF on admission, the worse the prognosis of patients with septic cardiomyopathy. The cardiac ultrasound LVEF on admission can be used as a clinical index to evaluate the severity of the condition and predict the prognosis of patients with septic cardiomyopathy.


Cardiomyopathies , Ventricular Function, Left , Female , Male , Humans , Stroke Volume , Prognosis , Retrospective Studies , China , Creatine Kinase, MB Form
12.
iScience ; 26(8): 107369, 2023 Aug 18.
Article En | MEDLINE | ID: mdl-37539026

Extranodal natural killer/T cell lymphoma, nasal type (ENKTL) is an aggressive lymphoid malignancy with a poor prognosis and lacks standard treatment. Targeted therapies are urgently needed. Here we systematically investigated the druggable mechanisms through chemogenomic screening and identified that Bcl-xL-specific BH3 mimetics effectively induced ENKTL cell apoptosis. Notably, the specific accumulation of Bcl-xL, but not other Bcl-2 family members, was verified in ENKTL cell lines and patient tissues. Furthermore, Bcl-xL high expression was shown to be closely associated with worse patient survival. The critical role of Bcl-xL in ENKTL cell survival was demonstrated utilizing selective inhibitors, genetic silencing, and a specific degrader. Additionally, the IL2-JAK1/3-STAT5 signaling was implicated in Bcl-xL dysregulation. In vivo, Bcl-xL inhibition reduced tumor burden, increased apoptosis, and prolonged survival in ENKTL cell line xenograft and patient-derived xenograft models. Our study indicates Bcl-xL as a promising therapeutic target for ENKTL, warranting monitoring in ongoing clinical trials by targeting Bcl-xL.

13.
J Pharm Biomed Anal ; 233: 115454, 2023 Sep 05.
Article En | MEDLINE | ID: mdl-37178631

Acute myeloid leukemia (AML) is a high mortality and recurrence rates hematologic malignancy. Thus, whatever early detection or subsequent visit are both of high significance. Traditional AML diagnosis is conducted via peripheral blood (PB) smear and bone marrow (BM) aspiration. But BM aspiration is a painful burden for patients especially in early detection or subsequent visit. Herein, the use of PB to evaluate and identify the leukemia characteristics will be an attractive alternative source for early detection or subsequent visit. Fourier transform infrared spectroscopy (FTIR) is a time- and cost-effective approach to reveal the disease-related molecular features and variations. However, to the best of our knowledge, there is no attempts using infrared spectroscopic signatures of PB to replace BM for identifying AML. In this work, we are the first to develop a rapid and minimally invasive method to identify AML by infrared difference spectrum (IDS) of PB with only 6 characteristic wavenumbers. We dissect the leukemia-related spectroscopic signatures of three subtypes of leukemia cells (U937, HL-60, THP-1) by IDS, revealing biochemical molecular information about leukemia for the first time. Furthermore, the novel study links cellular features to complex features of blood system which demonstrates the sensitivity and specificity with IDS method. On this basis, BM and PB of AML patients and healthy controls were provided to parallel comparison. The IDS of BM and PB combined with principal component analysis method revealing that the leukemic components in BM and PB can be described by IDS peaks of PCA loadings, respectively. It is demonstrated that the leukemic IDS signatures of BM can be replaced by the leukemic IDS signatures of PB. In addition, the IDS signatures of leukemia cells are reflected in PB of AML patients with peaks of 1629, 1610, 1604, 1536, 1528 and 1404 cm-1 for the first time as well. To this end, we access the leukemic signatures of IDS peaks to compare the PB of AMLs and healthy controls. It is confirmed that the leukemic components can be detected from PB of AML and distinguished into positive (100%) and negative (100%) groups successfully by IDS classifier which is a novel and unique spectral classifier. This work demonstrates the potential use of IDS as a powerful tool to detect leukemia via PB which can release subjects' pain remarkably.


Leukemia, Myeloid, Acute , Humans , Leukemia, Myeloid, Acute/blood , Leukemia, Myeloid, Acute/diagnosis , Cell Line, Tumor , Bone Marrow
14.
Life Sci Alliance ; 6(6)2023 06.
Article En | MEDLINE | ID: mdl-37037595

Enhancer of zeste homolog 2 (EZH2) is an important transcriptional regulator in development that catalyzes H3K27me3. The role of EZH2 in epicardial development is still unknown. In this study, we show that EZH2 is expressed in epicardial cells during both human and mouse heart development. Ezh2 epicardial deletion resulted in impaired epicardial cell migration, myocardial hypoplasia, and defective coronary plexus development, leading to embryonic lethality. By using RNA sequencing, we identified that EZH2 controls the transcription of tissue inhibitor of metalloproteinase 3 (TIMP3) in epicardial cells during heart development. Loss-of-function studies revealed that EZH2 promotes epicardial cell migration by suppressing TIMP3 expression. We also found that epicardial Ezh2 deficiency-induced TIMP3 up-regulation leads to extracellular matrix reconstruction in the embryonic myocardium by mass spectrometry. In conclusion, our results demonstrate that EZH2 is required for epicardial cell migration because it blocks Timp3 transcription, which is vital for heart development. Our study provides new insight into the function of EZH2 in cell migration and epicardial development.


Cell Movement , Enhancer of Zeste Homolog 2 Protein , Heart , Animals , Humans , Mice , Cell Movement/genetics , Enhancer of Zeste Homolog 2 Protein/genetics , Enhancer of Zeste Homolog 2 Protein/metabolism , Heart/growth & development
15.
Nat Commun ; 14(1): 2004, 2023 04 10.
Article En | MEDLINE | ID: mdl-37037861

Dermal fibroblasts and cutaneous nerves are important players in skin diseases, while their reciprocal roles during skin inflammation have not been characterized. Here we identify an inflammation-induced subset of papillary fibroblasts that promotes aberrant neurite outgrowth and psoriasiform skin inflammation by secreting the extracellular matrix protein tenascin-C (TNC). Single-cell analysis of fibroblast lineages reveals a Tnc+ papillary fibroblast subset with pro-axonogenesis and neuro-regulation transcriptomic hallmarks. TNC overexpression in fibroblasts boosts neurite outgrowth in co-cultured neurons, while fibroblast-specific TNC ablation suppresses hyperinnervation and alleviates skin inflammation in male mice modeling psoriasis. Dermal γδT cells, the main producers of type 17 pathogenic cytokines, frequently contact nerve fibers in mouse psoriasiform lesions and are likely modulated by postsynaptic signals. Overall, our results highlight the role of an inflammation-responsive fibroblast subset in facilitating neuro-immune synapse formation and suggest potential avenues for future therapeutic research.


Psoriasis , Tenascin , Male , Mice , Animals , Tenascin/genetics , Tenascin/metabolism , Neuroimmunomodulation , Extracellular Matrix Proteins/metabolism , Disease Models, Animal , Psoriasis/metabolism , Fibroblasts/metabolism , Inflammation/pathology
17.
J Environ Manage ; 334: 117503, 2023 May 15.
Article En | MEDLINE | ID: mdl-36796192

Dye wastewater has become one of the main risk sources of environmental pollution due to its high toxicity and difficulty in degradation. Hydrochar prepared by hydrothermal carbonization (HTC) of biomass has abundant surface oxygen-containing functional groups, and therefore is used as an adsorbent to remove water pollutants. The adsorption performance of hydrochar can be enhanced after improving its surface characteristics through nitrogen-doping (N-doping). In this study, wastewater rich in nitrogen sources such as urea, melamine and ammonium chloride were selected as the water source for the preparation of HTC feedstock. The N atoms were doped in the hydrochar with a content of 3.87%-5.70%, and mainly in the form of pyridinic-N, pyrrolic-N and graphitic-N, which changed the acidity and basicity of the hydrochar surface. The N-doped hydrochar adsorbed methylene blue (MB) and congo red (CR) in wastewater through pore filling, Lewis acid-base interaction, hydrogen bond, and π-π interaction, and the maximum adsorption capacities of those were obtained with 57.52 mg/g and 62.19 mg/g, respectively. However, the adsorption performance of N-doped hydrochar was considerably affected by the acid-base property of the wastewater. In a basic environment, the surface carboxyl of the hydrochar exhibited a high negative charge and thus an enhanced electrostatic interaction with MB. Whereas, the hydrochar surface was positively charged in an acid environment by binding H+, resulting in an enhanced electrostatic interaction with CR. Therefore, the adsorption efficiency of MB and CR by N-doped hydrochar can be tuned by adjusting the nitrogen source and the pH of the wastewater.


Wastewater , Water Pollutants, Chemical , Adsorption , Biomass , Congo Red , Water Pollutants, Chemical/chemistry , Methylene Blue/chemistry , Kinetics
18.
Front Microbiol ; 14: 1109719, 2023.
Article En | MEDLINE | ID: mdl-36846777

Luxiang-flavor Baijiu is the mainstream of Baijiu production and consumption in China, and the microbial composition has a great influence on the flavor and quality of Baijiu. In this study, we combined multi-omics sequencing technology to explore the microbial composition, dynamics and metabolite changes of Luxiang-flavor Jiupei during long fermentation periods. The results showed that based on the interaction between environmental constraints and microorganisms, Jiupei microorganisms formed different ecological niches and functional differentiation, which led to the formation of Jiupei stable core microorganisms. The bacteria were mainly Lactobacillus and Acetobacter, and the fungi were mainly Kazachstani and Issatchenkia. Most bacteria were negatively correlated with temperature, alcohol and acidity, and for the fungi, starch content, reducing sugar content and temperature had the most significant effects on community succession. Macroproteomic analysis revealed that Lactobacillus jinshani had the highest relative content; microbial composition, growth changes and functions were more similar in the pre-fermentation period (0-18 days); microorganisms stabilized in the late fermentation period (24-220 days). The metabolome analysis revealed that the metabolites of the Jiupei changed rapidly from 18 to 32 days of fermentation, with a significant increase in the relative content of amino acids, peptides and analogs and a significant decrease in the relative content of sugars; the metabolites of the Jiupei changed slowly from 32 to 220 days of fermentation, with a stabilization of the content of amino acids, peptides and analogs. This work provides insights into the microbial succession and microbial drivers during the long-term fermentation of Jiupei, which have potential implications for optimizing production and improving the flavor of Baijiu.

19.
Cell Mol Life Sci ; 80(2): 50, 2023 Jan 24.
Article En | MEDLINE | ID: mdl-36694058

The transdifferentiation from cardiac fibroblasts to myofibroblasts is an important event in the initiation of cardiac fibrosis. However, the underlying mechanism is not fully understood. Circ-sh3rf3 (circular RNA SH3 domain containing Ring Finger 3) is a novel circular RNA which was induced in hypertrophied ventricles by isoproterenol hydrochloride, and our work has established that it is a potential regulator in cardiac hypertrophy, but whether circ-sh3rf3 plays a role in cardiac fibrosis remains unclear, especially in the conversion of cardiac fibroblasts into myofibroblasts. Here, we found that circ-sh3rf3 was down-regulated in isoproterenol-treated rat cardiac fibroblasts and cardiomyocytes as well as during fibroblast differentiation into myofibroblasts. We further confirmed that circ-sh3rf3 could interact with GATA-4 proteins and reduce the expression of GATA-4, which in turn abolishes GATA-4 repression of miR-29a expression and thus up-regulates miR-29a expression, thereby inhibiting fibroblast-myofibroblast differentiation and myocardial fibrosis. Our work has established a novel Circ-sh3rf3/GATA-4/miR-29a regulatory cascade in fibroblast-myofibroblast differentiation and myocardial fibrosis, which provides a new therapeutic target for myocardial fibrosis.


Cardiomyopathies , Fibroblasts , Fibrosis , Myofibroblasts , RNA, Circular , Animals , Rats , Cardiomyopathies/genetics , Cardiomyopathies/metabolism , Cardiomyopathies/pathology , Cell Differentiation/genetics , Cell Differentiation/physiology , Fibroblasts/metabolism , Fibrosis/genetics , Fibrosis/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Myocytes, Cardiac/metabolism , Myofibroblasts/metabolism , RNA, Circular/genetics , RNA, Circular/metabolism , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism
20.
J Mol Cell Biol ; 14(11)2023 04 06.
Article En | MEDLINE | ID: mdl-36484653

Spermatogenesis is a highly complex developmental process that typically consists of mitosis, meiosis, and spermiogenesis. DNA/RNA helicase DHX36, a unique guanine-quadruplex (G4) resolvase, plays crucial roles in a variety of biological processes. We previously showed that DHX36 is highly expressed in male germ cells with the highest level in zygotene spermatocytes. Here, we deleted Dhx36 in advanced germ cells with Stra8-GFPCre and found that a Dhx36 deficiency in the differentiated spermatogonia leads to meiotic defects and abnormal spermiogenesis. These defects in late stages of spermatogenesis arise from dysregulated transcription of G4-harboring genes, which are required for meiosis. Thus, this study reveals that Dhx36 plays crucial roles in late stages of spermatogenesis.


RNA Helicases , RNA , Male , DNA/genetics , DNA Helicases/genetics , Meiosis , RNA Helicases/genetics , Spermatocytes , Spermatogenesis/genetics , Animals , Mice
...