Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Opt Express ; 32(3): 4436-4445, 2024 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-38297645

RESUMEN

Display technology is being revolutionized by cutting-edge transparent displays that can provide visual information on the screen while allowing the surrounding environment to be visible. In this report, a new method is proposed for patterning displays based on perovskite quantum dots (PQDs) on glass surfaces. A glass substrate with a polyvinylidene fluoride (PVDF) constraint layer is patterned using laser-induced plasma etching, and then a PQDs film is spin-coated on the etched sample. The PQDs pattern on the glass substrate is obtained after peeling off the PVDF constraint layer. The thickness of the film is obtained by carrying out simulations. The plasma output from different metal targets is recorded and analyzed to select the most suitable parameters and materials for improvement of the patterning accuracy. The transparent pattern display of PQDs is realized with an accuracy of 10-20 µm and a burial depth of about 1 µm. This method allows PQDs to be encapsulated under the substrate surface, which decreases the susceptibility of environmental impact. Additionally, encapsulation prevents the quantum dots from leaking out and causing environmental pollution. The proposed method has potential in the design of transparent displays and anti-counterfeiting applications.

2.
J Toxicol Sci ; 48(5): 273-283, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37121742

RESUMEN

The gastrointestinal (GI) tract is more vulnerable to effects by the outside environment, and experiences oxidative stress. A wide diversity of GI disorders can be partially attributed to oxidative stress. However, the mechanism of oxidative stress-caused GI pathological changes is not clear. In the present study, human gastric epithelial cells (hGECs) were treated with hydrogen peroxide (H2O2), and oxidative stress was determined. The effect of oxidative stress on the levels of some antioxidative enzymes, proliferation, nuclear DNA damage, apoptosis, expression of ten-eleven translocation (TET), and level of DNA methylation was determined in these cells. The results showed that H2O2 treatment caused oxidative stress, increased the levels of superoxide dismutase (SOD), catalase (CAT), and malondialdehyde (MDA), decreased the level of glutathione (GSH), inhibited proliferation, caused nuclear DNA damage and apoptosis, upregulated the expression of TET1 gene, and ultimately led to active DNA demethylation in hGECs. The present study presents a mechanism by which oxidative stress induces active DNA demethylation in hGECs. We propose that TET inhibitors can be used to restore the oxidative stress-induced DNA demethylation, and thus inhibit possible malignant transformation of GI cells.


Asunto(s)
Desmetilación del ADN , Peróxido de Hidrógeno , Humanos , Regulación hacia Arriba , Peróxido de Hidrógeno/toxicidad , Peróxido de Hidrógeno/metabolismo , Estrés Oxidativo , Antioxidantes/farmacología , Superóxido Dismutasa/metabolismo , Apoptosis/genética , Glutatión/metabolismo , Células Epiteliales , Oxigenasas de Función Mixta/genética , Oxigenasas de Función Mixta/metabolismo , Oxigenasas de Función Mixta/farmacología , Proteínas Proto-Oncogénicas/genética , Proteínas Proto-Oncogénicas/metabolismo
3.
J Fungi (Basel) ; 10(1)2023 Dec 27.
Artículo en Inglés | MEDLINE | ID: mdl-38248924

RESUMEN

Cut chrysanthemum, known as a highly favored floral choice globally, experiences a significant decline in production due to continuous cropping. The adverse physiological effects on cut chrysanthemums result from the degradation of a soil's physical and chemical properties, coupled with the proliferation of pathogens. The "Guangyu" cultivar in Xinxiang, Henan Province, China, has been specifically influenced by these effects. First, the precise pathogen accountable for wilt disease was effectively identified and validated in this study. An analysis was then conducted to examine the invasion pattern of the pathogen and the physiological response of chrysanthemum. Finally, the PacBio platform was employed to investigate the dynamic alterations in the microbial community within the soil rhizosphere by comparing the effects of 7 years of monocropping with the first year. Findings indicated that Fusarium solani was the primary causative agent responsible for wilt disease, because it possesses the ability to invade and establish colonies in plant roots, leading to alterations in various physiological parameters of plants. Continuous cropping significantly disturbed the microbial community composition, potentially acting as an additional influential factor in the advancement of wilt.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...