Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 101
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Org Lett ; 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39140705

RESUMEN

A novel Fe-catalyzed fluorosulfonylation of alkenes with Na2S2O4 and N-fluorobenzenesulfonimide (NFSI) for assembling various lactam-functionalized alkyl sulfonyl fluorides is disclosed. In this reaction, Na2S2O4 acts as both an SO2 source and a reductant. Furthermore, the resulting products can be efficiently transformed into valuable chemicals, including sulfonyl esters and sulfonamides, via the sulfur(VI) fluoride exchange (SuFEx) click reaction. Preliminary mechanistic studies suggest that the transformation proceeds through intramolecular radical cyclization, SO2 insertion, sulfite anion formation, and fluorination.

2.
Org Lett ; 26(28): 6018-6023, 2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-38968445

RESUMEN

Herein, decarboxylative C(sp3)-Sb coupling of aliphatic carboxylic acid derivatives with chlorostibines to access alkylstibines has been achieved. This catalyst-, ligand-, and base-free approach using zinc as a reductant affords various kinds of benzyldiarylstibines and other monoalkyldiarylstibines and tolerates various functional groups, including chlorine, bromine, hydroxyl, amide, sulfone, and cyano groups. The late-stage modification and the gram-scale experiments illustrate its potential application.

3.
Nano Lett ; 24(26): 8038-8045, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38885183

RESUMEN

Direct nitrogen oxidation into nitrate under ambient conditions presents a promising strategy for harsh and multistep industrial processes. However, the dynamic structural evolution of active sites in surface reactions constitutes a highly intricate endeavor and remains in its nascent stage. Here, we constructed a Bi24O31Cl10 material with moiré superlattice structure (BCMS) for direct piezo-photocatalytic oxidation of nitrogen into nitrate. Excitingly, BCMS achieved excellent nitric acid production (15.44 mg g-1 h-1) under light and pressure conditions. Detailed experimental results show that the unique structure extracts the local strain tensor from the constricting Bi-Bi bond and Bi-O bond for internal structural reconstruction, which promotes the formation of electron and reactive molecule vortexes to facilitate charge transfer as well as N2 and O2 adsorption. Ultimately, these initiatives strengthen electron exchange between the superoxide radical and nitrogen as well as the binding strength of multiple intermediates, which swayingly adjusts the reaction path and energy barriers.

4.
J Colloid Interface Sci ; 669: 393-401, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38718592

RESUMEN

Functionalizing organic polymers is an effective strategy for enhancing their photocatalytic performance. However, this approach is currently limited by specific motifs, complex preparation methods, and an unclear electron transfer mechanism. Here, we present a meticulously designed structure of perylene diimide connected with poly (barbituric acid trimer) through self-assembled hydrogen bonding. In particular, the local chemical environment of the two components is adjusted by hydrogen bond-induced dipole-dipole interactions, leading to the emergence of a significant inherent electric field. Additionally, the formation of hydrogen bonds provides electronic pathways that facilitate charge transfer from perylene to adjacent units. Moreover, the distinctive electronic structure enhances polarity transfer and improves activation and adsorption capabilities for reactive molecules. Ultimately, B-PDI exhibits outstanding oxidation rates for benzylamine to N-benzylidene-benzylamine (10.03 mmol g-1h-1) and selectivity (>99.99 %). Our work offers a widely popular approach for enhancing the photocatalytic activity of organic semiconductor materials by constructing hydrogen bonds in heterogeneous molecules.

5.
J Colloid Interface Sci ; 665: 999-1006, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38579390

RESUMEN

Piezo-photocatalytic water (deuterium oxide) decomposition is a promising strategy for realizing renewable energy, but the manipulation of the polar center remains a big challenge. This study uses a simple low-temperature hydrothermal process to successfully manufacture ZnmIn2Sm+3 (m = 1-3) (ZnIn2S4, Zn2In2S5 and Zn3In2S6). Incorporating both experimental and theoretical analyses, the structural contraction and local polarization of the Zn-S bond in Zn2In2S5 enhance the piezoelectric response and surface charge accumulation, which facilitate charge transfer and reduce the activation energy of water. Remarkably, Zn2In2S5 exhibits excellent piezoelectric photocatalytic total water splitting performance (H2/O2: 4284.72/1967.00 µmol g-1h-1), which is 1.77 times that of photocatalytic performance. Moreover, a significant enhancement in D2O splitting performance can be obtained for the optimized Zn2In2S5. Our work offers valuable insights into the disclosure of local polarization in catalysts for enhancing piezo-photocatalytic overall water splitting.

6.
J Org Chem ; 89(5): 3033-3048, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38372254

RESUMEN

A novel and efficient protocol for the synthesis of diarylallyl-functionalized phosphonates, phosphinates, and phosphine oxides through the zinc-catalyzed dehydroxylative phosphorylation of allylic alcohols with P(III)-nucleophiles via a Michaelis-Arbuzov-type rearrangement is reported. A broad range of allylic alcohols and P(III)-nucleophiles (P(OR)3, ArP(OR)2, and Ar2P(OR)) are well tolerated in this reaction, and the expected dehydroxylative phosphorylation products could be synthesized with good to excellent yields under the optimal reaction conditions. The reaction can be easily scaled up at a gram-synthesis level. Furthermore, through the step-by-step control experiments, kinetic study experiments, and 31P NMR tracking experiments, we acquired insights into the reaction and proposed the possible mechanism for this transformation.

7.
J Org Chem ; 89(1): 183-190, 2024 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-38141025

RESUMEN

A Sb,N ligand (L-Sb) for Pd-catalyzed double N-arylation of primary amines was developed. This trivalent ligand L-Sb, containing a 5,6,7,12-tetrahydrodibenzo[c,f][1,5]azastibocine skeleton and stable under air and moisture, could be synthesized facilely on a gram scale from chlorostibine (1) and cyclopentylmagnesium bromide. L-Sb showed excellent catalytic performance in Pd2(dba)3-catalyzed double N-arylation of 2,2'-dibromo-1,1'-biphenyl (2) with primary amines (3), affording functionalized carbazoles in good yields. This Pd2(dba)3/L-Sb-catalyzed double N-arylation, the first example of the application of trivalent organostibines as a ligand in N-arylation, featured the following advantages: small catalyst loading, wide functional group tolerance, good yields, and ease of gram-scale synthesis.

8.
Org Lett ; 26(1): 344-349, 2024 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-38147593

RESUMEN

In this study, we present a nickel-catalyzed reductive C(sp3)-Sb coupling of unactivated alkyl chlorides with chlorostibines. This approach is highly versatile, tolerating various functional groups such as acetal, alkene, nitrile, amine, ester, silyl ether, thioether, and various heterocyclic compounds. Notably, the late-stage modification of bioactive molecules and the satisfactory anticancer activity against cancerous MDA-MB-231 also demonstrate the potential application.


Asunto(s)
Cloruros , Níquel , Aminas , Catálisis , Éteres , Células MDA-MB-231
9.
J Org Chem ; 88(23): 16196-16215, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-37955519

RESUMEN

A simple and efficient method for the ruthenium-catalyzed 1,6-hydroalkylation of para-quinone methides (p-QMs) with ketones via the in situ activation of C(sp3)-H bonds has been disclosed. Without the need for preactivation of the substrates and oxidant, a broad range of p-QMs and ketones are well tolerated, producing the expected 1,6-hydroalkylation products with moderate to good yields. Step-by-step control experiments and DFT calculation were conducted systematically to gain insights for the plausible reaction mechanism. This finding may have potential application in the selective diarylmethylation of ketones at the α-C position in organic synthesis.

10.
Top Curr Chem (Cham) ; 381(5): 25, 2023 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-37610550

RESUMEN

Development of nitrogen-rich energetic materials has gained much attention because of their remarkable properties including large nitrogen content and energy density, good thermal stability, low sensitivity, good energetic performance, environmental friendliness and so on. Tetrazole has the highest nitrogen and highest energy contents among the stable azoles. The incorporation of diverse explosophoric groups or substituents into the tetrazole skeleton is beneficial to obtain high-nitrogen energetic materials having excellent energetic performance and suitable sensitivity. In this review, the development of high-nitrogen energetic materials based on tetrazole skeleton is highlighted. Initially, the property and utilization of nitrogen-rich energetic materials are presented. After showing the advantage of the tetrazole skeleton, the high-nitrogen energetic materials based on tetrazole are classified and introduced in detail. Based on different types of energetic materials (EMs), the synthesis and properties of nitrogen-rich energetic materials based on mono-, di-, tri- and tetra-tetrazole are summarized in detail.


Asunto(s)
Esqueleto , Tetrazoles , Azoles , Nitrógeno
11.
J Org Chem ; 88(17): 12502-12518, 2023 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-37579226

RESUMEN

A copper-catalyzed aerobic oxidative/decarboxylative phosphorylation of aryl acrylic acids with P(III)-nucleophiles via the Michaelis-Arbuzov rearrangement for the synthesis of ß-ketophosphine oxides, ß-ketophosphinates, and ß-ketophosphonates is reported. The present reaction could be conducted effectively without the use of a ligand and a base. Various kinds of aryl acrylic acids and P(III)-nucleophiles are tolerated in the transformation, generating the desired ß-keto-organophosphorus compounds as a valuable class of phosphorus-containing intermediates with good to excellent yields. In addition, the possible mechanism and kinetic studies for the reaction have been explored by step-by-step control experiments and competitive experiments, and the results proved that this transformation may follow second-order chemical kinetics as well as involve a radical process.

12.
J Colloid Interface Sci ; 651: 68-75, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37540931

RESUMEN

Designing a robust built-in electric field (BF) is a charming strategy for enhancing the separation and transportation of charges via introducing large π-conjugated molecules. However, it has flexible or semiflexible geometries, which significantly disorder the crystalline and deteriorated the built-in electric field. Here, a straightforward tactic for creating a cyano-functionalized smaller D (benzene) - A (triazine) units in PDI- triazine based polymer (PDIMB) to enhance intrinsic molecule dipole has been proposed. The density functional theory (DFT) calculation revealed that the modification of smaller D-A groups destroyed the π-localization of charges, which enhanced the molecular dipole and the BF for promoting the exciton dissociation and charge transfer. Moreover, it not only exposed number of active sites, but also enhanced the interfacial molecular interacting. Therefore, PDIMB-2 exhibits high activity (24.5 mmol g-1 h-1) and selectivity (>99%) for the photooxidation of benzylamine to N-benzylidenebenzylamine under mild conditions. Our work offers a potential and simple synthetic option for enhancing the built-in electric field of polymer.

13.
Nanomaterials (Basel) ; 13(13)2023 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-37446435

RESUMEN

Converting and storing solar energy directly as chemical energy through photoelectrochemical devices are promising strategies to replace fossil fuels. Metal oxides are commonly used as photoanode materials, but they still encounter challenges such as limited light absorption, inefficient charge separation, sluggish surface reactions, and insufficient stability. The regulation of surface oxygen species on metal oxide photoanodes has emerged as a critical strategy to modulate molecular and charge dynamics at the reaction interface. However, the precise role of surface oxygen species in metal oxide photoanodes remains ambiguous. The review focuses on elucidating the formation and regulation mechanisms of various surface oxygen species in metal oxides, their advantages and disadvantages in photoelectrochemical reactions, and the characterization methods employed to investigate them. Additionally, the article discusses emerging opportunities and potential hurdles in the regulation of surface oxygen species. By shedding light on the significance of surface oxygen species, this review aims to advance our understanding of their impact on metal oxide photoanodes, paving the way for the design of more efficient and stable photoelectrochemical devices.

14.
Angew Chem Int Ed Engl ; 62(38): e202307246, 2023 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-37488928

RESUMEN

Core-shell photoanodes have shown great potential for photoelectrochemical (PEC) water oxidation. However, the construction of a high-quality interface between the core and shell, as well as a highly catalytic surface, remains a challenge. Herein, guided by computation, we present a BiVO4 photoanode coated with ZnCoFe polyphthalocyanine using pyrazine as a coordination agent. The bidirectional axial coordination of pyrazine plays a dual role by facilitating intimate interfacial contact between BiVO4 and ZnCoFe polyphthalocyanine, as well as regulating the electron density and spin configuration of metal sites in ZnCoFe phthalocyanine, thereby promoting the potential-limiting step of *OOH desorption. The resulting photoanode displayed a high photocurrent density of 5.7±0.1 mA cm-2 at 1.23 VRHE . This study introduces a new approach for constructing core-shell photoanodes, and uncovers the key role of pyrazine axial coordination in modulating the catalytic activity of metal phthalocyanine.

15.
J Org Chem ; 88(5): 3089-3108, 2023 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-36763008

RESUMEN

4-Sulfanyl-substituted 1,2,3-triazoles were provided regioselectively with good yields and broad scope via consecutive t-BuOK-promoted dephosphinylation of 1-phosphinyl-2-sulfanylethynes and copper-catalyzed azide-alkyne cycloadditions (CuAAC) with alkyl azides. Unsymmetrically substituted ditriazoles were successfully obtained using a tandem dephosphinylative CuAAC protocol with diazides. Direct CuAAC of the 1-phosphinyl-2-sulfanylethynes with azides afforded regioisomeric mixtures of 4-phosphinyl-5-sulfanyl- and 5-phosphinyl-4-sulfanyl-1,2,3-triazoles that were easily separable from one another. When the phosphinyl- and sulfanyl-substituted triazoles were treated with t-BuOK, the dephosphination proceeded smoothly, yielding the corresponding 5- and 4-sulfanyltriazoles, respectively. 5-(1-Aryl-1-hydroxymethyl)-4-sulfanyltriazoles were synthesized by stepwise treatment of 5-phosphinyl-4-sulfanyltriazole with MeMgBr and arylaldehydes. Additionally, Ph2P(O) and RS groups in the triazoles were easily converted to Ph2P and RSO2 by PhSiH3-reduction and m-CPBA-oxidation, respectively. Following the dephosphinylative CuAAC of 1-phosphinyl-2-(4-t-butylphenylsulfanyl)ethyne with aryl azides and m-CPBA-oxidation, potent antagonists of pregnane X receptor LC-58 and LC-59 were successfully produced.

16.
Org Lett ; 25(2): 389-394, 2023 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-36607146

RESUMEN

In this paper, a convenient synthesis of 2,5-diacylthiophenes and ß-acyl allylic methylsulfones from aryl methyl ketones with dimethyl sulfoxide (DMSO) through Selectfluor-promoted cascade cyclization and cross-coupling reactions by simple solvent modification is described. This method enables the formation of new C-C and C-S bonds via the selection of different solvent ratios, in which DMSO molecules as synthons can be selectively introduced into methyl ketones. The features of this transformation include readily available starting materials, excellent chemoselectivity, and good functional group tolerance.

17.
Org Lett ; 25(4): 676-681, 2023 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-36682056

RESUMEN

Herein we describe a method to produce 2-haloalkoxy-3-substituted quinolines via the cyclization of 2-alkynylanilines with TMSCF3 and THF. This synthetic method uses inexpensive and easy-to-handle TMSCF3 and employs a commercially available CuI catalyst to transform a broad range of 2-alkynylanilines into versatile 2-difluoromethoxy-3-substituted quinolines and 2-iodoalkoxy-3-substituted quinolines with excellent chemoselectivity.

18.
J Org Chem ; 88(10): 6304-6312, 2023 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-36001795

RESUMEN

Recently, water promotion effects in the selective oxidation of benzyl alcohol to benzaldehyde have been experimentally recognized and identified. However, the effects of water on the photocatalytic selective oxidation of toluene into benzaldehyde remain elusive. In this work, the Ti3O9H6 clusters in different solvents (water and toluene solvent) are used to study the water-induced effects in photocatalytic oxidation reactions in kinetics and thermodynamics using density functional theory (DFT) calculations. In addition, the influences of the OH groups on catalysts (Ti-OH bonds) from photocatalytic water splitting are also considered. The results clearly demonstrate the water-induced double-edged sword effects in the photocatalytic selective oxidation of toluene. We expect that our work can not only shed light on the mechanisms of photocatalytic selective oxidation of toluene into benzaldehyde and other activation reactions of sp3 C-H bonds but also design and modulate highly efficient photocatalysts.

19.
J Colloid Interface Sci ; 630(Pt B): 452-459, 2023 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-36334482

RESUMEN

Fluorine atoms doping was reported in experiment to reduce the band gap, improve the oxidation potential of hole, and polarize the electron distribution of polymeric carbon nitride (PCN). However, the relationships between different types of F doping and the roles of F doping in electronic and optical properties remain elusive. In this work, we investigate several F doping types in PCN and analyze their different roles in electronic and optical properties with the first-principles calculations. The results show that two stable and cooperative F doping types are found, one is to form the C (sp3)-F bond (Fcorner type), and the other is F atom replacing amino group -NH2 (FN3 type) forming covalent C-F bond. The Fcorner doping reduces the energy level of valence-band maximum (VBM), causes excited electron-hole distribution polarized, and increases the hole distribution on F atoms, which strengthens the capacity of photocatalytic oxidation and improves the electron-hole separation efficiency, while FN3 type doping plays the roles of reducing the bandgap and improving the light absorption. In addition, under the synergistic action of two types of F doping, the adsorption energy of toluene on F-codoped PCN is greatly enhanced, improving the ability of photocatalytic activation of toluene. Our work develops a new understanding of F doping and reveals the roles of different types of F doping, providing a rationale for designing and regulating more efficient photocatalysts and improving the properties of photocatalytic toluene oxidation.

20.
RSC Adv ; 12(54): 35215-35220, 2022 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-36540229

RESUMEN

We have developed a transition-metal free protocol for efficient cross-dehydrogenative coupling of 3-aryl benzofuran-2(3H)-ones and toluenes/phenols using DTBP as an oxidant. A diverse range of 3-aryl benzofuran-2(3H)-ones, toluenes, and phenols undergo C-H bond cleavage to generate all-carbon quaternary centers in good yields, making this protocol useful for the synthesis of complex molecules. A gram scale experiment was performed in good yield.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA