Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Oncoimmunology ; 13(1): 2300882, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38192443

RESUMEN

Myeloid cells are known to play a crucial role in creating a tumor-promoting and immune suppressive microenvironment. Our previous study demonstrated that primary human monocytes can be polarized into immunosuppressive myeloid-derived suppressor cells (MDSCs) by cancer-associated fibroblasts (CAFs) in a 3D co-culture system. However, the molecular mechanisms underlying the immunosuppressive function of MDSCs, especially CAF-induced MDSCs, remain poorly understood. Using mass spectrometry-based proteomics, we compared cell surface protein changes among monocytes, in vitro differentiated CAF-induced MDSCs, M1/M2 macrophages, and dendritic cells, and identified an extracellular vesicle (EV)-mediated secretory phenotype of MDSCs. Functional assays using an MDSC/T-cell co-culture system revealed that blocking EV generation in CAF-induced MDSCs reversed their ability to suppress T-cell proliferation, while EVs isolated from CAF-induced MDSCs directly inhibited T-cell function. Furthermore, we identified fructose bisphosphatase 1 (FBP1) as a cargo protein that is highly enriched in EVs isolated from CAF-induced MDSCs, and pharmacological inhibition of FBP1 partially reversed the suppressive phenotype of MDSCs. Our findings provide valuable insights into the cell surface proteome of different monocyte-derived myeloid subsets and uncover a novel mechanism underlying the interplay between CAFs and myeloid cells in shaping a tumor-permissive microenvironment.


Asunto(s)
Fibroblastos Asociados al Cáncer , Vesículas Extracelulares , Células Supresoras de Origen Mieloide , Neoplasias , Humanos , Linfocitos T , Microambiente Tumoral
2.
Sci Transl Med ; 12(540)2020 04 22.
Artículo en Inglés | MEDLINE | ID: mdl-32321864

RESUMEN

The kinase-activating mutation G2019S in leucine-rich repeat kinase 2 (LRRK2) is one of the most common genetic causes of Parkinson's disease (PD) and has spurred development of LRRK2 inhibitors. Preclinical studies have raised concerns about the safety of LRRK2 inhibitors due to histopathological changes in the lungs of nonhuman primates treated with two of these compounds. Here, we investigated whether these lung effects represented on-target pharmacology and whether they were reversible after drug withdrawal in macaques. We also examined whether treatment was associated with pulmonary function deficits. We conducted a 2-week repeat-dose toxicology study in macaques comparing three different LRRK2 inhibitors: GNE-7915 (30 mg/kg, twice daily as a positive control), MLi-2 (15 and 50 mg/kg, once daily), and PFE-360 (3 and 6 mg/kg, once daily). Subsets of animals dosed with GNE-7915 or MLi-2 were evaluated 2 weeks after drug withdrawal for lung function. All compounds induced mild cytoplasmic vacuolation of type II lung pneumocytes without signs of lung degeneration, implicating on-target pharmacology. At low doses of PFE-360 or MLi-2, there was ~50 or 100% LRRK2 inhibition in brain tissue, respectively, but histopathological lung changes were either absent or minimal. The lung effect was reversible after dosing ceased. Lung function tests demonstrated that the histological changes in lung tissue induced by MLi-2 and GNE-7915 did not result in pulmonary deficits. Our results suggest that the observed lung effects in nonhuman primates in response to LRRK2 inhibitors should not preclude clinical testing of these compounds for PD.


Asunto(s)
Enfermedad de Parkinson , Animales , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/genética , Pulmón , Morfolinas , Mutación , Primates , Pirimidinas , Pirroles
3.
J Med Chem ; 60(7): 2983-2992, 2017 04 13.
Artículo en Inglés | MEDLINE | ID: mdl-28245354

RESUMEN

Leucine-rich repeat kinase 2 (LRRK2) is a large, multidomain protein which contains a kinase domain and GTPase domain among other regions. Individuals possessing gain of function mutations in the kinase domain such as the most prevalent G2019S mutation have been associated with an increased risk for the development of Parkinson's disease (PD). Given this genetic validation for inhibition of LRRK2 kinase activity as a potential means of affecting disease progression, our team set out to develop LRRK2 inhibitors to test this hypothesis. A high throughput screen of our compound collection afforded a number of promising indazole leads which were truncated in order to identify a minimum pharmacophore. Further optimization of these indazoles led to the development of MLi-2 (1): a potent, highly selective, orally available, brain-penetrant inhibitor of LRRK2.


Asunto(s)
Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Indazoles/química , Indazoles/farmacología , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/antagonistas & inhibidores , Animales , Encéfalo/metabolismo , Inhibidores Enzimáticos/administración & dosificación , Inhibidores Enzimáticos/farmacocinética , Humanos , Indazoles/administración & dosificación , Indazoles/farmacocinética , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/metabolismo , Masculino , Simulación del Acoplamiento Molecular , Enfermedad de Parkinson/tratamiento farmacológico , Enfermedad de Parkinson/enzimología , Ratas , Ratas Wistar
4.
J Pharmacol Exp Ther ; 355(3): 397-409, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26407721

RESUMEN

Mutations in the leucine-rich repeat kinase 2 (LRRK2) gene are the most common genetic cause of familial and sporadic Parkinson's disease (PD). That the most prevalent mutation, G2019S, leads to increased kinase activity has led to a concerted effort to identify LRRK2 kinase inhibitors as a potential disease-modifying therapy for PD. An internal medicinal chemistry effort identified several potent and highly selective compounds with favorable drug-like properties. Here, we characterize the pharmacological properties of cis-2,6-dimethyl-4-(6-(5-(1-methylcyclopropoxy)-1H-indazol-3-yl)pyrimidin-4-yl)morpholine (MLi-2), a structurally novel, highly potent, and selective LRRK2 kinase inhibitor with central nervous system activity. MLi-2 exhibits exceptional potency in a purified LRRK2 kinase assay in vitro (IC50 = 0.76 nM), a cellular assay monitoring dephosphorylation of LRRK2 pSer935 LRRK2 (IC50 = 1.4 nM), and a radioligand competition binding assay (IC50 = 3.4 nM). MLi-2 has greater than 295-fold selectivity for over 300 kinases in addition to a diverse panel of receptors and ion channels. Acute oral and subchronic dosing in MLi-2 mice resulted in dose-dependent central and peripheral target inhibition over a 24-hour period as measured by dephosphorylation of pSer935 LRRK2. Treatment of MitoPark mice with MLi-2 was well tolerated over a 15-week period at brain and plasma exposures >100× the in vivo plasma IC50 for LRRK2 kinase inhibition as measured by pSer935 dephosphorylation. Morphologic changes in the lung, consistent with enlarged type II pneumocytes, were observed in MLi-2-treated MitoPark mice. These data demonstrate the suitability of MLi-2 as a compound to explore LRRK2 biology in cellular and animal models.


Asunto(s)
Antiparkinsonianos/efectos adversos , Antiparkinsonianos/uso terapéutico , Indazoles/farmacología , Inhibidores de Proteínas Quinasas/efectos adversos , Inhibidores de Proteínas Quinasas/uso terapéutico , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Pirimidinas/farmacología , Células Epiteliales Alveolares/efectos de los fármacos , Células Epiteliales Alveolares/patología , Animales , Conducta Animal/efectos de los fármacos , Unión Competitiva , Encéfalo/metabolismo , Química Encefálica/efectos de los fármacos , Línea Celular , Corteza Cerebral/efectos de los fármacos , Corteza Cerebral/metabolismo , Relación Dosis-Respuesta a Droga , Humanos , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina , Pulmón/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Mutación/genética , Enfermedad de Parkinson/tratamiento farmacológico , Enfermedad de Parkinson/patología , Enfermedad de Parkinson/psicología , Fosforilación , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo
5.
J Biomol Screen ; 9(4): 309-21, 2004 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-15191648

RESUMEN

Most of the protein kinase inhibitors being developed are directed toward the adenosine triphosphate (ATP) binding site that is highly conserved in many kinases. A major issue with these inhibitors is the specificity for a given kinase. Structure determination of several kinases has shown that protein kinases adopt distinct conformations in their inactive state, in contrast to their strikingly similar conformations in their active states. Hence, alternative assay formats that can identify compounds targeting the inactive form of a protein kinase are desirable. The authors describe the development and optimization of an Immobilized Metal Assay for Phosphochemicals (IMAP)-based couple d assay using PDK1 and inactive Akt-2 enzymes. PDK1 phosphorylates Akt-2 at Thr 309 in the catalytic domain, leading to enzymatic activation. Activation of Akt by PDK1 is measured by quantitating the phosphorylation of Akt-specific substrate peptide using the IMAP assay format. This IMAP-coupled assay has been formatted in a 384-well microplate format with a Z' of 0.73 suitable for high-throughput screening. This assay was evaluated by screening the biologically active sample set LOPAC trade mark and validated with the protein kinase C inhibitor staurosporine. The IC(50) value generated was comparable to the value obtained by the radioactive (33)P-gamma-ATP flashplate transfer assay. This coupled assay has the potential to identify compounds that target the inactive form of Akt and prevent its activation by PDK1, in addition to finding inhibitors of PDK1 and activated Akt enzymes.


Asunto(s)
Inmunoensayo de Polarización Fluorescente/métodos , Proteínas Serina-Treonina Quinasas/química , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Proto-Oncogénicas/química , Proteínas Proto-Oncogénicas/metabolismo , Proteínas Quinasas Dependientes de 3-Fosfoinosítido , Adenosina Trifosfato/metabolismo , Humanos , Técnicas In Vitro , Metabolismo de los Lípidos , Fosforilación , Conformación Proteica , Proteínas Serina-Treonina Quinasas/genética , Proteínas Proto-Oncogénicas/genética , Proteínas Proto-Oncogénicas c-akt , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
6.
Cancer Res ; 63(20): 6697-706, 2003 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-14583464

RESUMEN

Akt/protein kinase B is a serine/threonine kinase that plays a critical role in cell survival signaling, and its activation has been linked to tumorigenesis in several human cancers. Up-regulation of Akt, as well as its upstream regulator phosphatidylinositol 3-kinase, has been found in many tumors, and the negative regulator of this pathway, mutated in multiple advanced cancers suppressor (MMAC; also known as phosphatase and tensin homologue deleted on chromosome 10), is a tumor suppressor gene. We have investigated the effects of inhibiting Akt signaling in tumor cells by expression of an Akt kinase-dead mutant in which the two regulatory phosphorylation sites have been mutated to alanines. This mutant, which functions in a dominant negative manner (Akt-DN), was introduced into tumor cells using a replication-defective adenovirus expression system. As controls we used adenoviruses expressing p53, MMAC, beta-galactosidase, and empty virus. We show that in vitro proliferation of human and mouse tumor cells expressing high levels of activated/phosphorylated Akt was inhibited by both Akt-DN and p53, in comparison with control viruses expressing beta-galactosidase. Similarly, Akt-DN mutant expression led to selective induction of apoptosis in tumor cells expressing activated Akt. On the other hand, Akt-DN expression had minimal effect in normal and tumor cells expressing low levels of activated Akt. Expression of MMAC induced selective apoptosis in tumor cell lines in which MMAC is inactivated but not in tumor cells expressing wild-type levels of MMAC. In addition, the growth of tumor cells in a mouse model was also significantly inhibited by intratumoral injection of Akt-DN virus. These studies validate the usefulness of targeting Akt for new drug discovery efforts and suggest that inhibition of Akt may have a selective antitumor effect.


Asunto(s)
Apoptosis/fisiología , Terapia Genética/métodos , Mutación , Proteínas Serina-Treonina Quinasas , Proteínas Proto-Oncogénicas/antagonistas & inhibidores , Proteínas Proto-Oncogénicas/genética , Adenoviridae/enzimología , Adenoviridae/genética , Animales , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Neoplasias de la Mama/terapia , División Celular/fisiología , Línea Celular Tumoral , Humanos , Melanoma/genética , Melanoma/patología , Melanoma/terapia , Ratones , Ratones Endogámicos BALB C , Proteínas Proto-Oncogénicas/metabolismo , Proteínas Proto-Oncogénicas c-akt , Transducción de Señal/fisiología , Ensayos Antitumor por Modelo de Xenoinjerto
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...