Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
1.
Circulation ; 2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38841852

RESUMEN

BACKGROUND: Dilated cardiomyopathy is characterized by left ventricular dilation and continuous systolic dysfunction. Mitochondrial impairment is critical in dilated cardiomyopathy; however, the underlying mechanisms remain unclear. Here, we explored the cardioprotective role of a heart-enriched long noncoding RNA, the dilated cardiomyopathy repressive transcript (DCRT), in maintaining mitochondrial function. METHODS: The DCRT knockout (DCRT-/-) mice and DCRT knockout cells were developed using CRISPR-Cas9 technology. Cardiac-specific DCRT transgenic mice were generated using α-myosin heavy chain promoter. Chromatin coimmunoprecipitation, RNA immunoprecipitation, Western blot, and isoform sequencing were performed to investigate the underlying mechanisms. RESULTS: We found that the long noncoding RNA DCRT was highly enriched in the normal heart tissues and that its expression was significantly downregulated in the myocardium of patients with dilated cardiomyopathy. DCRT-/- mice spontaneously developed cardiac dysfunction and enlargement with mitochondrial impairment. DCRT transgene or overexpression with the recombinant adeno-associated virus system in mice attenuated cardiac dysfunction induced by transverse aortic constriction treatment. Mechanistically, DCRT inhibited the third exon skipping of NDUFS2 (NADH dehydrogenase ubiquinone iron-sulfur protein 2) by directly binding to PTBP1 (polypyrimidine tract binding protein 1) in the nucleus of cardiomyocytes. Skipping of the third exon of NDUFS2 induced mitochondrial dysfunction by competitively inhibiting mitochondrial complex I activity and binding to PRDX5 (peroxiredoxin 5) and suppressing its antioxidant activity. Furthermore, coenzyme Q10 partially alleviated mitochondrial dysfunction in cardiomyocytes caused by DCRT reduction. CONCLUSIONS: Our study revealed that the loss of DCRT contributed to PTBP1-mediated exon skipping of NDUFS2, thereby inducing cardiac mitochondrial dysfunction during dilated cardiomyopathy development, which could be partially treated with coenzyme Q10 supplementation.

2.
Sci China Life Sci ; 67(6): 1155-1169, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38811441

RESUMEN

CFIRL is a long noncoding RNA (lncRNA), we previously identified as the most significantly upregulated lncRNA in the failing hearts of patients with dilated cardiomyopathy (DCM). In this study, we determined the function of CFIRL and its role in DCM. Real-time polymerase chain reaction and in situ hybridization assays revealed that CFIRL was primarily localized in the nucleus of cardiac fibroblasts and robustly increased in failing hearts. Global knockdown or fibroblast-specific knockout of CFIRL attenuated transverse aortic constriction (TAC)-induced cardiac dysfunction and fibrosis in vivo. Overexpression of CFIRL in vitro promoted fibroblast proliferation and aggravated angiotensin II-induced differentiation to myofibroblasts. CFIRL knockdown attenuated these effects. Mechanistically, RNA pull-down assay and gene expression profiling revealed that CFIRL recruited ENO1, a newly identified noncanonical transcriptional factor, to activate IL-6 transcription. IL-6 exerted a paracrine effect on cardiomyocytes to promote cardiac hypertrophy, which can be prevented by CFIRL knockdown. These findings uncover the critical role of CFIRL, a fibroblast-associated lncRNA, in heart failure by facilitating crosstalk between fibroblasts and cardiomyocytes. CFIRL knockdown might be a potent strategy to prevent cardiac remodeling in heart failure, particularly in DCM.


Asunto(s)
Cardiomiopatía Dilatada , Fibroblastos , Fibrosis , Miocitos Cardíacos , ARN Largo no Codificante , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Cardiomiopatía Dilatada/genética , Cardiomiopatía Dilatada/metabolismo , Animales , Fibroblastos/metabolismo , Masculino , Humanos , Miocitos Cardíacos/metabolismo , Ratones , Proliferación Celular , Interleucina-6/metabolismo , Interleucina-6/genética , Ratones Endogámicos C57BL , Miocardio/metabolismo , Miocardio/patología , Miofibroblastos/metabolismo , Insuficiencia Cardíaca/genética , Insuficiencia Cardíaca/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Diferenciación Celular , Técnicas de Silenciamiento del Gen
3.
Foods ; 13(3)2024 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-38338616

RESUMEN

The influence of polysialic acid (PSA) and sialic acid (SA) on the gut microbial community composition and metabolites in healthy humans was investigated using a bionic gastrointestinal reactor. The results indicated that PSA and SA significantly changed the gut microbiota and metabolites to different degrees. PSA can increase the relative abundances of Faecalibacterium and Allisonella, whereas SA can increase those of Bifidobacterium and Megamonas. Both can significantly increase the content of short-chain fatty acids. The results of metabolome analysis showed that PSA can upregulate ergosterol peroxide and gallic acid and downregulate the harmful metabolite N-acetylputrescine. SA can upregulate 4-pyridoxic acid and lipoic acid. PSA and SA affect gut microbiota and metabolites in different ways and have positive effects on human health. These results will provide a reference for the further development of PSA- and SA-related functional foods and health products.

4.
Microbiol Spectr ; 12(1): e0302723, 2024 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-38088542

RESUMEN

IMPORTANCE: The 2019 coronavirus disease (COVID-19) patients had a unique profile of gut bacteria. In this study, we characterized the intestinal bacteria in our COVID-19 cohorts and found that there was an increased incidence of severe cases in COVID-19 patients with decreased lymphocytes and increased neutrophils. Levels of lymphocytes and neutrophils and abundances of intestinal bacteria correlated with the severity of COVID-19.


Asunto(s)
COVID-19 , Neutrófilos , Humanos , SARS-CoV-2 , Recuento de Linfocitos , Linfocitos
5.
Foods ; 12(15)2023 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-37569116

RESUMEN

Cereals are one of the most important foods on which human beings rely to sustain basic life activities and are closely related to human health. This study investigated the effects of different steamed buns on intestinal microbiota. Three steamed buns were prepared using refined flour (RF), 1:1 mixed flour (MF), and whole wheat flour (WF). In vitro digestion simulations were conducted using a bionic gastrointestinal reactor (BGR) to examine their influence on intestinal microbiota. The results showed that at 0.5% addition, butyric acid and short-chain fatty acids in WF were significantly different from those in RF and MF (p < 0.05). WF also promoted the proliferation of beneficial microbiota, such as Megamonas and Subdoligranulum. At 0.5%, 1.0%, and 1.5% additions of WF, acetic acid and short-chain fatty acids at 1.5% WF increased by 1167.5% and 11.4% from 0.5% WF, respectively, and by 20.2% and 7.6% from 1.0% WF, respectively. WF also promoted the proliferation of Bifidobacterium, Lactobacillus, and Bacteroides and inhibited the growth of pathogenic microbiota, such as Streptococcus, Enterococcus, and Klebsiella. These findings support the consumption of whole cereals and offer insights into the development of new functional foods derived from wheat.

6.
Signal Transduct Target Ther ; 8(1): 226, 2023 06 09.
Artículo en Inglés | MEDLINE | ID: mdl-37291118

RESUMEN

Dilated cardiomyopathy (DCM) is the leading cause of heart transplantation. By microRNA (miRNA) array, a Kaposi's sarcoma-associated herpes virus (KSHV)-encoded miRNA, kshv-miR-K12-1-5p, was detected in patients with DCM. The KSHV DNA load and kshv-miR-K12-1-5p level in plasma from 696 patients with DCM were measured and these patients were followed-up. Increased KSHV seropositivity and quantitative titers were found in the patients with DCM compared with the non-DCM group (22.0% versus 9.1%, p < 0.05; 168 versus 14 copies/mL plasma, p < 0.05). The risk of the individual end point of death from cardiovascular causes or heart transplantation was increased among DCM patients with the KSHV DNA seropositivity during follow-up (adjusted hazard ratio 1.38, 95% confidence interval 1.01-1.90; p < 0.05). In heart tissues, the KSHV DNA load was also increased in the heart from patients with DCM in comparison with healthy donors (1016 versus 29 copies/105 cells, p < 0.05). The KSHV and kshv-miR-K12-1-5p in DCM hearts were detected using immunofluorescence and fluorescence staining in situ hybridization. KSHV itself was exclusively detectable in CD31-positive endothelium, while kshv-miR-K12-1-5p could be detected in both endothelium and cardiomyocytes. Moreover, kshv-miR-K12-1-5p released by KSHV-infected cardiac endothelium could disrupt the type I interferon signaling pathway in cardiomyocytes. Two models of kshv-miR-K12-1-5p overexpression (agomiR and recombinant adeno-associated virus) were used to explore the roles of KSHV-encoded miRNA in vivo. The kshv-miR-K12-1-5p aggravated known cardiotropic viruses-induced cardiac dysfunction and inflammatory infiltration. In conclusion, KSHV infection was a risk factor for DCM, providing developmental insights of DCM involving virus and its miRNA ( https://clinicaltrials.gov . Unique identifier: NCT03461107).


Asunto(s)
Cardiomiopatía Dilatada , Herpesvirus Humano 8 , MicroARNs , Sarcoma de Kaposi , Humanos , MicroARNs/genética , MicroARNs/metabolismo , Herpesvirus Humano 8/genética , Herpesvirus Humano 8/metabolismo , Sarcoma de Kaposi/genética , Sarcoma de Kaposi/metabolismo , Cardiomiopatía Dilatada/genética , Transducción de Señal
7.
Biomed Pharmacother ; 163: 114836, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37156118

RESUMEN

Diabetic cardiomyopathy (DCM) is defined as abnormalities in myocardial structure and function in the setting of diabetes and in the absence of cardiovascular diseases, such as coronary artery disease, hypertension, and valvular heart disease. DCM is one of the leading causes of mortality in patients with diabetes. However, the underlying pathogenesis of DCM has not been fully elucidated. Recent studies have revealed that non-coding RNAs (ncRNAs) in small extracellular vesicles (sEVs) are closely associated with DCM and may act as potential diagnostic and therapeutic targets. Here, we introduced the role of sEV-ncRNAs in DCM, summarized the current therapeutic advancements and limitations of sEV-related ncRNAs against DCM, and discussed their potential improvement.


Asunto(s)
Enfermedad de la Arteria Coronaria , Diabetes Mellitus , Cardiomiopatías Diabéticas , Vesículas Extracelulares , Humanos , Cardiomiopatías Diabéticas/tratamiento farmacológico , Cardiomiopatías Diabéticas/genética , Miocardio/patología , Vesículas Extracelulares/patología , Enfermedad de la Arteria Coronaria/patología , Diabetes Mellitus/patología
9.
ACS Omega ; 7(31): 27609-27616, 2022 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-35967041

RESUMEN

This work studied the effect of mixed graphite and MoS2 fillers on tribological properties of hybrid polytetrafluoroethylene (PTFE)/Nomex fabric/epoxy multilayer composites under water lubrication. A ring-on-block tribometer was used to perform the tribological test under dry sliding and water lubrication conditions. The worn surface was analyzed by scanning electron microscopy and optical microscopy. The results showed mixed fillers with 2.5 wt % graphite and 5 wt % MoS2 had the best underwater tribological properties with the lowest friction coefficient (COF) of 0.067 and the lowest wear amount of 1.7 mg. Mixed fillers optimize epoxy resin properties, thereby increasing shore hardness, reducing water absorption, and improving wear resistance. This study also explained the reasons of the wear amount was higher in water than in dry sliding.

10.
Int J Biol Macromol ; 216: 629-642, 2022 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-35810853

RESUMEN

In the present study, clove essential oil (CEO) Pickering emulsions were stabilized by octadecylamine-modified carboxymethyl curdlan (CMCD-ODA) at different pH values. The droplet size and negatively charged zeta potential of the CMCD-ODA emulsions decreased as the pH increased from 3.0 to 11.0. Rheology results indicated that the CMCD-ODA polymer/emulsion prepared at pH 5.0 showed higher apparent viscosity and viscoelasticity than other pH conditions, which might prevent droplets from flocculating. The Pickering emulsions obtained at pH 5.0 were spherical droplets with a uniform size distribution and a mean diameter of 9.54 µm, and they exhibited excellent stability during 28 days of storage. The morphological structures of the emulsions investigated by confocal laser scanning microscopy and scanning electron microscopy indicated that the CMCD-ODA Pickering emulsion obtained at pH 5.0 was stabilized by loading amphiphilic CMCD-ODA polymer around the spherical oil droplets and forming a weak gel network structure. The CEO-loaded CMCD-ODA emulsions had higher antioxidant capacity than free CEO after 28 days of storage at pH 5.0. Given the good emulsion stability, antioxidant activity, and great antibacterial effect, the CEO-loaded carboxymethyl curdlan Pickering emulsion has promising applications in food, cosmetic, and biomedicine industries.


Asunto(s)
Aceites Volátiles , Syzygium , Disponibilidad Biológica , Aceite de Clavo , Emulsiones/química , Aceites Volátiles/química , Tamaño de la Partícula , Polímeros , beta-Glucanos
11.
Appl Microbiol Biotechnol ; 106(7): 2381-2391, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35278115

RESUMEN

Polysialic acid (PSA) is a long-chain linear amino polysaccharide with broad application prospects; however, its relatively low molecular weight limits its application range. This study aims to explore a new fermentation method of combining the three-phase pH control strategy, three-phase mixing speed control strategy, and exogenous substance to produce high molecular weight PSA. In brief, Escherichia coli K235 6E61 (CCTCC M208088) was used as a fermentation strain. 3 g·L-1 Na5P3O10 was added to the initial medium. At 0-12 h, the mixing speed was controlled to 250 r·min-1, and the pH was maintained at 7.2. At 12-20 h, the mixing speed was increased to 400 r·min-1, the pH was changed to 6.8, and 0.75% n-hexadecane was added at hour 16. After 20 h, the mixing speed was adjusted to 250 r·min-1; the pH was restored to 7.2. Air flow was regulated to 1.2 vvm throughout the experiment. The combination fermentation strategy greatly improved the molecular weight of PSA up to 498 kDa at 32 h, which is currently the maximum molecular weight of PSA produced through microbial fermentation. The yield of PSA reached 6.27 g·L-1 at the end of fermentation (36 h), which is also currently the highest yield of PSA produced by natural bacteria. Therefore, the proposed strategy could simultaneously increase the molecular weight and yield of PSA and is of great importance to the industrial production of high molecular weight PSA. Key points • A new fermentation process was explored to produce high molecular weight PSA. • The yield and molecular weight were improved by the combination fermentation strategy. • The maximum molecular weight and highest yield of PSA were obtained.


Asunto(s)
Antígeno Prostático Específico , Ácidos Siálicos , Escherichia coli/genética , Fermentación , Humanos , Masculino , Peso Molecular , Ácidos Siálicos/química
12.
ACS Omega ; 7(9): 7737-7744, 2022 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-35284704

RESUMEN

Hybrid poly(tetrafluoroethylene) (PTFE)/Nomex fabric laminate composites were prepared with phenolic and epoxy resins. A pin-on-disc tribometer was used to perform tribological tests with different applied loads and rotational speeds. The wear surface, transfer film, and cross section were analyzed by scanning electron microscopy (SEM) and optical microscopy. The results showed that the epoxy resin with high strength and good binding properties can enhance underwater tribological and mechanical properties. The underwater surface hardness was also improved by the epoxy resin. The underwater strength and adhesiveness of the phenolic resin reduced and the underwater surface hardness also decreased, causing a decrease in underwater tribological and mechanical properties of the phenolic resin.

13.
J Cardiovasc Transl Res ; 15(3): 469-476, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35175553

RESUMEN

Diabetic cardiomyopathy (DCM) is one of the major causes of heart failure in diabetic patients. However, the pathogenesis of diabetic cardiomyopathy has not been fully elucidated. Diagnosis and therapeutic strategy of DCM is still challenging. Various non-coding RNAs (ncRNA) are implicated in the onset and progression of DCM. Interestingly, ncRNAs not only are regulators intracellularly, but also can exist and function in extracellular space. Recent evidences have demonstrated that extracellular ncRNAs play emerging roles in both intracardiac and inter-organ communication during the pathogenesis of DCM; thus, extracellular ncRNAs are attractive diagnostic biomarkers and potential therapeutic targets for DCM. This article will review the current knowledge of the roles of extracellular ncRNAs in DCM, especially focusing on their physio-pathological properties and perspectives of potential clinical translation for biomarkers and therapies. Recent evidences have demonstrated that extracellular ncRNA play emerging roles in both intracardiac and inter-organ communication involved in the pathogenesis of diabetic cardiomyopathy (DCM), thus shown as attractive diagnostic biomarkers and potential therapeutics for DCM. In the current review, we first summarize the progress regarding the paracrine role of extracellular ncRNA in DCM. miRNAs and circRNAs have been shown to mediate the communication among cardiomyocytes, endothelial cells, and vascular smooth muscle cells in the diabetic heart. Subsequently, we systematically describe that extracellular ncRNAs contribute to the crosstalk between the heart and other organs in the context of diabetes. Researches have indicated that miRNAs acted as hepatokines and adipokines to mediates the injure effect of distal organs on hearts. As for clinical application, extracellular ncRNAs are promising biomarker and have therapeutic potential. (Created with BioRender.com).


Asunto(s)
Diabetes Mellitus , Cardiomiopatías Diabéticas , MicroARNs , ARN Largo no Codificante , Biomarcadores , Cardiomiopatías Diabéticas/genética , Cardiomiopatías Diabéticas/patología , Cardiomiopatías Diabéticas/terapia , Células Endoteliales/patología , Humanos , MicroARNs/genética , ARN Largo no Codificante/genética , ARN no Traducido/genética
14.
Mol Ther Nucleic Acids ; 26: 444-457, 2021 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-34631276

RESUMEN

A variety of studies indicate that microRNAs (miRNAs) are involved in diabetes. However, the direct role of miR-320a in the pathophysiology of pancreatic ß cells under diabetes mellitus remains unclear. In the current study, islet transplantation and hyperglycemic clamp assays were performed in miR-320a transgenic mice to explore the effects of miR-320a on pancreatic ß cells in vivo. Meanwhile, ß cell-specific overexpression or inhibition of miR-320a was delivered by adeno-associated virus (AAV8). In vitro, overexpression or downregulation of miR-320a was introduced in cultured rat islet tumor cells (INS1). RNA immunoprecipitation sequencing (RIP-Seq), luciferase reporter assay, and western blotting were performed to identify the target genes. Results showed that miR-320a was increased in the pancreatic ß cells from high-fat-diet (HFD)-treated mice. Overexpression of miR-320a could not only deteriorate the HFD-induced pancreatic islet dysfunction, but also initiate pancreatic islet dysfunction spontaneously in vivo. Meanwhile, miR-320a increased the ROS level, inhibited proliferation, and induced apoptosis of cultured ß cells in vitro. Finally, we identified that MafF was the target of miR-320a that responsible for the dysfunction of pancreatic ß cells. Our data suggested that miR-320a could damage the pancreatic ß cells directly and might be a potential therapeutic target of diabetes.

16.
Int J Biol Sci ; 17(2): 402-416, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33613101

RESUMEN

Glucose and lipids are important nutrients that provide the majority of energy for each organ to maintain homeostasis of the body. With the continuous improvement in living standards, the incidence of metabolic disorder-associated diseases, such as diabetes, hyperlipidemia, and atherosclerosis, is increasing worldwide. Among them, diabetes, which could be induced by both glucose and lipid metabolic disorders, is one of the five diseases with the highest incidence and mortality worldwide. However, the detailed molecular mechanisms underlying glucose and lipid metabolism disorders and target-organ damage are still not fully defined. MicroRNAs (miRNAs) are small, non-coding, single-stranded RNAs, which usually affect their target mRNAs in the cytoplasm by post-transcriptional regulation. Previously, we have found that miR-320 contributed to glucose and lipid metabolism via different signaling pathways. Most importantly, we identified that nuclear miR-320 mediated diabetes-induced cardiac dysfunction by activating the transcription of fatty acid metabolic genes to cause lipotoxicity in the heart. Here, we reviewed the roles of miR-320 in glucose and lipid metabolism and target-organ damage.


Asunto(s)
Trastornos del Metabolismo de la Glucosa/genética , Trastornos del Metabolismo de los Lípidos/genética , MicroARNs/fisiología , Biomarcadores/metabolismo , Humanos
17.
Circ Res ; 128(11): 1708-1723, 2021 05 28.
Artículo en Inglés | MEDLINE | ID: mdl-33550812
18.
Materials (Basel) ; 15(1)2021 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-35009208

RESUMEN

This paper studied a hybrid polytetrafluoroethylene (PTFE)/Nomex fabric composite with lower friction coefficient (COF) and high underwater wear resistance. A pin-on-disk tribometer was used to test tribological properties under different applied loads and rotation speeds. The wear surface, transfer film and cross-section were analyzed by scanning electron microscope (SEM) and optical microscope. The results showed enhanced underwater tribological properties because of excellent self-lubricating properties of PTFE fibers and a good lubricating effect and load-carrying capacity of graphite fillers. Improved underwater mechanical strength was connected to the high strength of epoxy resin and high bonding force between Nomex and epoxy resin.

19.
iScience ; 23(12): 101788, 2020 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-33294796

RESUMEN

It has been unclear whether the elevated levels of the circulating miR-320a in patients with coronary artery disease is due to environmental influence or genetic basis. By recombinant adeno-associated virus (rAAV)-mediated loss- and gain-of-function studies in the mouse liver, we revealed that elevated miR-320a is sufficient to aggravate diet-induced hyperlipidemia and hepatic steatosis. Then, we analyzed the data from published genome-wide association studies and identified the rs12541335 associated with hyperlipidemia. We demonstrated that the rs13282783 T allele indeed obligated the silencer activity by preventing the repressor ZFP161 and co-repressor HDAC2 from binding to DNA that led to miR-320a upregulation. We further confirmed this genetic connection on an independent population and through direct genome editing in liver cells. Besides environmental (diet) influence, we established a genetic component in the regulation of miR-320a expression, which suggest a potential therapeutic avenue to treat coronary artery disease by blocking miR-320a in patient liver.

20.
Front Genet ; 11: 563166, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33329700

RESUMEN

Cardiovascular diseases are one of the prime reasons for disability and death worldwide. Diseases and conditions, such as hypoxia, pressure overload, infection, and hyperglycemia, might initiate cardiac remodeling and dysfunction by inducing hypertrophy or apoptosis in cardiomyocytes and by promoting proliferation in cardiac fibroblasts. In the vascular system, injuries decrease the endothelial nitric oxide levels and affect the phenotype of vascular smooth muscle cells. Understanding the underlying mechanisms will be helpful for the development of a precise therapeutic approach. Various microRNAs are involved in mediating multiple pathological and physiological processes in the heart. A cardiac enriched microRNA, miR-21, which is essential for cardiac homeostasis, has been demonstrated to act as a cell-cell messenger with diverse functions. This review describes the cell type-specific functions of miR-21 in different cardiovascular diseases and its prospects in clinical therapy.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA