Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 14(1): 1724, 2023 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-36977664

RESUMEN

Nanostructured metal-nitrides have attracted tremendous interest as a new generation of catalysts for electroreduction of CO2, but these structures have limited activity and stability in the reduction condition. Herein, we report a method of fabricating FeN/Fe3N nanoparticles with FeN/Fe3N interface exposed on the NP surface for efficient electrochemical CO2 reduction reaction (CO2RR). The FeN/Fe3N interface is populated with Fe-N4 and Fe-N2 coordination sites respectively that show the desired catalysis synergy to enhance the reduction of CO2 to CO. The CO Faraday efficiency reaches 98% at -0.4 V vs. reversible hydrogen electrode, and the FE stays stable from -0.4 to -0.9 V during the 100 h electrolysis time period. This FeN/Fe3N synergy arises from electron transfer from Fe3N to FeN and the preferred CO2 adsorption and reduction to *COOH on FeN. Our study demonstrates a reliable interface control strategy to improve catalytic efficiency of the Fe-N structure for CO2RR.

2.
Nat Mater ; 22(1): 100-108, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36266572

RESUMEN

Iridium-based electrocatalysts remain the only practical anode catalysts for proton exchange membrane (PEM) water electrolysis, due to their excellent stability under acidic oxygen evolution reaction (OER), but are greatly limited by their high cost and low reserves. Here, we report a nickel-stabilized, ruthenium dioxide (Ni-RuO2) catalyst, a promising alternative to iridium, with high activity and durability in acidic OER for PEM water electrolysis. While pristine RuO2 showed poor acidic OER stability and degraded within a short period of continuous operation, the incorporation of Ni greatly stabilized the RuO2 lattice and extended its durability by more than one order of magnitude. When applied to the anode of a PEM water electrolyser, our Ni-RuO2 catalyst demonstrated >1,000 h stability under a water-splitting current of 200 mA cm-2, suggesting potential for practical applications. Density functional theory studies, coupled with operando differential electrochemical mass spectroscopy analysis, confirmed the adsorbate-evolving mechanism on Ni-RuO2, as well as the critical role of Ni dopants in stabilization of surface Ru and subsurface oxygen for improved OER durability.

3.
J Am Chem Soc ; 144(45): 20931-20938, 2022 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-36382467

RESUMEN

A hybrid catalyst with integrated single-atom Ni and nanoscale Cu catalytic components is reported to enhance the C-C coupling and ethylene (C2H4) production efficiency in the electrocatalytic CO2 reduction reaction (eCO2RR). The single-atom Ni anchored on high-surface-area ordered mesoporous carbon enables high-rate and selective conversion of CO2 to CO in a wide potential range, which complements the subsequent CO enrichment on Cu nanowires (NWs) for the C-C coupling to C2H4. In situ surface-enhanced infrared absorption spectroscopy (SEIRAS) confirms the substantially improved CO enrichment on Cu, once the incorporation of single-atom Ni occurs. Also, in situ X-ray absorption near-edge structure (XANES) demonstrates the structural stability of the hybrid catalyst during eCO2RR. By modulating hybrid compositions, the optimized catalyst shows 66% Faradaic efficiency (FE) in an alkaline flow cell with over 100 mA·cm-2 at -0.5 V versus reversible hydrogen electrode, leading to a five-order enhancement in C2H4 selectivity compared with single-component Cu NWs.

4.
Small ; 18(16): e2107799, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35229465

RESUMEN

The electrochemical carbon dioxide reduction reaction (CO2 RR) is a transformative technology to reduce the carbon footprint of modern society. Single-site catalysts have been demonstrated as promising catalysts for CO2 RR, but general synthetic methods for catalysts with high surface area and tunable single-site metal composition still need to be developed to unambiguously investigate the structure-activity relationship crossing various metal sites. Here, a generalized coordination-condensation strategy is reported to prepare single-atom metal sites on ordered mesoporous carbon (OMC) with high surface areas (average 800 m2  g-1 ). This method is applicable to a broad range of metal sites (Fe, Co, Ni, Cu, Pt, Pd, Ru, and Rh) with loadings up to 4 wt.%. In particular, the CO2 RR to carbon monoxide (CO) Faradaic efficiency (FE) with Ni single-site OMC catalyst reaches 95%. This high FE is maintained even under large current density (>140 mA cm-2 ) and in a long-term study (14 h), which suits the urgently needed large-scale applications. Theoretical calculations suggest that the enhanced activity on single-atom Ni sites results from balanced binding energies between key intermediates, COOH and CO, for CO2 RR, as mediated by the coordination sphere.

5.
J Am Chem Soc ; 143(37): 15335-15343, 2021 09 22.
Artículo en Inglés | MEDLINE | ID: mdl-34519488

RESUMEN

We report a new form of catalyst based on ferromagnetic hexagonal-close-packed (hcp) Co nanosheets (NSs) for selective CO2RR to ethanal, CH3CHO. In all reduction potentials tested from -0.2 to -1.0 V (vs RHE) in 0.5 M KHCO3 solution, the reduction yields ethanal as a major product and ethanol/methanol as minor products. At -0.4 V, the Faradaic efficiency (FE) for ethanal reaches 60% with current densities of 5.1 mA cm-2 and mass activity of 3.4 A g-1 (total FE for ethanal/ethanol/methanol is 82%). Density functional theory (DFT) calculations suggest that this high CO2RR selectivity to ethanal on the hcp Co surface is attributed to the unique intralayer electron transfer, which not only promotes [OC-CO]* coupling but also suppresses the complete hydrogenation of the coupling intermediates to ethylene, leading to highly selective formation of CH3CHO.

6.
iScience ; 24(3): 102172, 2021 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-33681727

RESUMEN

Electrosynthesis is to use electricity to drive chemical reactions for chemical synthesis and is potentially a green approach to fuel and energy sustainability. Nanostructured catalysts play an important role in promoting electrochemical reactions under green chemistry conditions. This perspective first provides a brief tutorial on electrosynthesis and the roles the nanocatalysts play in the synthesis. It then outlines the common strategies used to develop nanocatalysts for hydrogen evolution reaction, CO2 reduction reaction, and biomass upgrading. The perspective further summarizes the current methodologies that have been developed for scaling-up synthesis of nanocatalysts, which will be essential for the electrosynthesis to become a viable industry approach.

7.
J Am Chem Soc ; 143(4): 2115-2122, 2021 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-33493397

RESUMEN

Enabling catalysts to promote multistep chemical reactions in a tandem fashion is an exciting new direction for the green chemistry synthesis of materials. Nanoparticle (NP) catalysts are particularly well suited for tandem reactions due to the diverse surface-active sites they offer. Here, we report that AuPd alloy NPs, especially 3.7 nm Au42Pd58 NPs, catalyze one-pot reactions of formic acid, diisopropoxy-dinitrobenzene, and terephthalaldehyde, yielding a very pure thermoplastic rigid-rod polymer, polybenzoxazole (PBO), with a molecular weight that is tunable from 5.8 to 19.1 kDa. The PBO films are more resistant to hydrolysis and possess thermal and mechanical properties that are superior to those of commercial PBO, Zylon. Cu NPs are also active in catalyzing tandem reactions to form PBO when formic acid is replaced with ammonia borane. Our work demonstrates a general approach to the green chemistry synthesis of rigid-rod polymers as lightweight structural materials for broad thermomechanical applications.

8.
Nanoscale ; 13(4): 2312-2316, 2021 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-33464266

RESUMEN

AgPd alloy nanoparticles were applied for the electrocatalytic reduction of furfural (2-furfuraldehyde). Constant potential electrolysis experiments were carried out and furfural conversions and product selectivities to furfuryl alcohol were systematically investigated to elucidate the alloy composition-catalytic property relationship. AgPd catalysts exhibited faradaic efficiencies to furfuryl alcohol over 95% for Ag60Pd40 at low overpotentials in neutral, aqueous electrolyte.

9.
J Am Chem Soc ; 142(45): 19209-19216, 2020 11 11.
Artículo en Inglés | MEDLINE | ID: mdl-33124818

RESUMEN

Tuning the performance of nanoparticle (NP) catalysts by controlling the NP surface strain has evolved as an important strategy to optimize NP catalysis in many energy conversion reactions. Here, we present our new study on using an eigenforce model to predict and experiments to verify the strain-induced catalysis enhancement of the oxygen reduction reaction (ORR) in the presence of L10-CoMPt NPs (M = Mn, Fe, Ni, Cu, Ni). The eigenforce model allowed us to predict anisotropic (that is, two-dimensional) strain levels on distorted Pt(111) surfaces. Experimentally, by preparing a series of 5 nm L10-CoMPt NPs, we could push the ORR catalytic activity of these NPs toward the optimum region of the theoretical two-dimensional volcano plot predicted for L10-CoMPt. The best ORR catalyst in the alloy NP series we studied is L10-CoNiPt, which has a mass activity of 3.1 A/mgPt and a specific activity of 9.3 mA/cm2 at room temperature with only 15.9% loss of mass activity after 30 000 cycles at 60 °C in 0.1 M HClO4.


Asunto(s)
Nanopartículas del Metal/química , Oxígeno/química , Aleaciones/química , Catálisis , Teoría Funcional de la Densidad , Oxidación-Reducción
10.
Adv Sci (Weinh) ; 7(10): 1903070, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32440471

RESUMEN

Electrocatalytic water splitting (2H2O → 2H2 + O2) is a very promising avenue to effectively and environmentally friendly produce highly pure hydrogen (H2) and oxygen (O2) at a large scale. Different materials have been developed to enhance the efficiency for water splitting. Among them, chalcogenides with unique atomic arrangement and high electronic transport show interesting catalytic properties in various electrochemical reactions, such as the hydrogen evolution reaction, oxygen evolution reaction, and overall water splitting, while the control of their morphology and structure is of vital importance to their catalytic performance. Herein, the general synthetic methods are summarized to prepare metal chalcogenides and different strategies are designed to improve their catalytic performance for water splitting. The remaining challenges in the research and development of metal chalcogenides and possible directions for future research are also summarized.

11.
Angew Chem Int Ed Engl ; 59(37): 15933-15936, 2020 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-32453881

RESUMEN

An efficient CuPd nanoparticle (NP) catalyst (3 nm CuPd NPs deposited on carbon support) is designed for catalyzing electrochemical allylic alkylation in water/isopropanol (1:1 v/v) and 0.2 m KHCO3 solution at room temperature. The Pd catalysis was Pd/Cu composition-dependent, and CuPd NPs with a Pd/Cu ratio close to one are the most efficient catalyst for the selective cross-coupling of alkyl halides and allylic halides to form C-C hydrocarbons with product yields reaching up to 99 %. This NP-catalyzed electrochemical allylic alkylation expands the synthetic scope of cross-coupling reactions and can be further extended to other organic reaction systems for developing green chemistry electrosynthesis methods.

12.
J Am Chem Soc ; 142(18): 8440-8446, 2020 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-32301612

RESUMEN

We report a chemical method to synthesize size-controllable SmCo5 nanoparticles (NPs) and to stabilize the NPs against air oxidation by coating a layer of N-doped graphitic carbon (NGC). First 10 nm CoO and 5 nm Sm2O3 NPs were synthesized and aggregated in reverse micelles of oleylamine to form SmCo-oxide NPs with a controlled size (110, 150, or 200 nm). The SmCo-O NPs were then coated with polydopamine and thermally annealed to form SmCo-O/NGC NPs, which were further embedded in CaO matrix and reduced with Ca at 850 °C to give SmCo5/NGC NPs of 80, 120, or 180 nm, respectively. The 10 nm NGC coating efficiently stabilized the SmCo5 NPs against air oxidation at room temperature or at 100 °C. The magnetization value of the 180 nm SmCo5/NGC NPs was stabilized at 86.1 emu/g 5 days after air exposure at room temperature and dropped only 1.7% 48 h after air exposure at 100 °C. The stable SmCo5/NGC NPs were aligned magnetically in an epoxy resin, showing a square-like hysteresis behavior with their Hc reaching 51.1 kOe at 150 K and 21.9 kOe at 330 K and their Mr stabilized at around 84.8 emu/g. Our study demonstrates a new strategy for synthesizing and stabilizing SmCo5 NPs for high-performance nanomagnet applications in a broad temperature range.

13.
Nano Lett ; 19(12): 8658-8663, 2019 12 11.
Artículo en Inglés | MEDLINE | ID: mdl-31682758

RESUMEN

Understanding the Cu-catalyzed electrochemical CO2 reduction reaction (CO2RR) under ambient conditions is both fundamentally interesting and technologically important for selective CO2RR to hydrocarbons. Current Cu catalysts studied for the CO2RR can show high activity but tend to yield a mixture of different hydrocarbons, posing a serious challenge on using any of these catalysts for selective CO2RR. Here, we report a new perovskite-type copper(I) nitride (Cu3N) nanocube (NC) catalyst for selective CO2RR. The 25 nm Cu3N NCs show high CO2RR selectivity and stability to ethylene (C2H4) at -1.6 V (vs reversible hydrogen electrode (RHE)) with the Faradaic efficiency of 60%, mass activity of 34 A/g, and C2H4/CH4 molar ratio of >2000. More detailed electrochemical characterization, X-ray photon spectroscopy, and density functional theory calculations suggest that the high CO2RR selectivity is likely a result of (100) Cu(I) stabilization by the Cu3N structure, which favors CO-CHO coupling on the (100) Cu3N surface, leading to selective formation of C2H4. Our study presents a good example of utilizing metal nitrides as highly efficient nanocatalysts for selective CO2RR to hydrocarbons that will be important for sustainable chemistry/energy applications.

14.
Nanoscale ; 11(41): 18946-18967, 2019 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-31454005

RESUMEN

The growth and breadth of nanoparticle (NP) research now encompasses many scientific and technologic fields, which has driven the want to control NP dimensions, structures and properties. Recent advances in NP synthesis, especially in solution phase synthesis, and characterization have made it possible to tune NP sizes and shapes to optimize NP properties for various applications. In this review, we summarize the general concepts of using solution phase chemistry to control NP nucleation and growth for the formation of monodisperse NPs with polyhedral, cubic, octahedral, rod, or wire shapes and complex multicomponent heterostructures. Using some representative examples, we demonstrate how to use these monodisperse NPs to tune and optimize NP catalysis of some important energy conversion reactions, such as the oxygen reduction reaction, electrochemical carbon dioxide reduction, and cascade dehydrogenation/hydrogenation for the formation of functional organic compounds under greener chemical reaction conditions. Monodisperse NPs with controlled surface chemistry, morphologies and magnetic properties also show great potential for use in biomedicine. We highlight how monodisperse iron oxide NPs are made biocompatible and target-specific for biomedical imaging, sensing and therapeutic applications. We intend to provide readers some concrete evidence that monodisperse NPs have been established to serve as successful model systems for understanding structure-property relationships at the nanoscale and further to show great potential for advanced nanotechnological applications.


Asunto(s)
Nanomedicina , Nanopartículas/química , Animales , Dióxido de Carbono/química , Catálisis , Cisplatino/química , Cisplatino/metabolismo , Portadores de Fármacos/química , Técnicas Electroquímicas , Tecnología Química Verde , Neoplasias/diagnóstico por imagen
15.
Angew Chem Int Ed Engl ; 58(40): 14100-14103, 2019 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-31314934

RESUMEN

We report a new strategy to prepare a composite catalyst for highly efficient electrochemical CO2 reduction reaction (CO2 RR). The composite catalyst is made by anchoring Au nanoparticles on Cu nanowires via 4,4'-bipyridine (bipy). The Au-bipy-Cu composite catalyzes the CO2 RR in 0.1 m KHCO3 with a total Faradaic efficiency (FE) reaching 90.6 % at -0.9 V to provide C-products, among which CH3 CHO (25 % FE) dominates the liquid product (HCOO- , CH3 CHO, and CH3 COO- ) distribution (75 %). The enhanced CO2 RR catalysis demonstrated by Au-bipy-Cu originates from its synergistic Au (CO2 to CO) and Cu (CO to C-products) catalysis which is further promoted by bipy. The Au-bipy-Cu composite represents a new catalyst system for effective CO2 RR conversion to C-products.

16.
Angew Chem Int Ed Engl ; 58(2): 602-606, 2019 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-30414238

RESUMEN

We report a general chemical approach to synthesize strongly ferromagnetic rare-earth metal (REM) based SmCo and SmFeN nanoparticles (NPs) with ultra-large coercivity. The synthesis started with the preparation of hexagonal CoO+Sm2 O3 (denoted as SmCo-O) multipods via decomposition of Sm(acac)3 and Co(acac)3 in oleylamine. These multipods were further reduced with Ca at 850 °C to form SmCo5 NPs with sizes tunable from 50 to 200 nm. The 200 nm SmCo5 NPs were dispersed in ethanol, and magnetically aligned in polyethylene glycol (PEG) matrix, yielding a PEG-SmCo5 NP composite with the room temperature coercivity (Hc ) of 49.2 kOe, the largest Hc among all ferromagnetic NPs ever reported, and saturated magnetic moment (Ms ) of 88.7 emu g-1 , the highest value reported for SmCo5 NPs. The method was extended to synthesize other ferromagnetic NPs of Sm2 Co17 , and, for the first time, of Sm2 Fe17 N3 NPs with Hc over 15 kOe and Ms reaching 127.9 emu g-1 . These REM based NPs are important magnetic building blocks for fabrication of high-performance permanent magnets, flexible magnets, and printable magnetic inks for energy and sensing applications.

17.
J Am Chem Soc ; 140(48): 16460-16463, 2018 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-30457854

RESUMEN

We report a new strategy of controlling catalytic activity and selectivity of Cu nanoparticles (NPs) for the ammonia borane initiated hydrogenation reaction. Cu NPs are active and selective for chemoselective reduction of nitrostyrene to vinylaniline under ambient conditions. Their activity, selectivity, and more importantly, stability are greatly enhanced by their anchoring on WO2.72 nanorods, providing a room-temperature full conversion of nitrostyrene selectively to vinylaniline (>99% yield). Compared with all other catalysts developed thus far, our new Cu/WO2.72 catalyst shows much enhanced hydrogenation selectivity and stability without the use of pressured hydrogen. The synthetic approach demonstrated here can be extended to prepare various M/WO2.72 catalysts (M = Fe, Co, Ni), with M being stabilized for many chemical reactions.

18.
Nanoscale ; 10(18): 8735-8740, 2018 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-29707729

RESUMEN

We report a simple strategy to synthesize anisotropic SmCo5 nanoplates. The strategy involves the pre-synthesis of 125 × 12 nm Sm(OH)3 nanorods and 10 nm Co nanoparticles followed by the self-assembly of these nanorods and nanoparticles into Sm(OH)3-Co nanocomposites. Once embedded in a CaO matrix, the nanocomposite is subjected to high temperature (850 °C) annealing in the presence of Ca, leading to the formation of 125 × 10 nm SmCo5 nanoplates, which are dispersible in ethanol, allowing the alignment in epoxy resin under a 20 kOe magnetic field. The aligned SmCo5 nanoplates show a square hysteresis behavior with room temperature coercivity reaching 30.1 kOe, which is among the highest values ever reported for SmCo5 made from chemical methods. This work provides a new approach to high-performance anisotropic SmCo5 for permanent magnetic applications.

19.
ChemSusChem ; 11(10): 1617-1620, 2018 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-29539207

RESUMEN

Ni30 Pd70 nanoparticles supported on nitrogen-doped graphene (NG) acts as a catalyst for the hydrodehalogenation of halogenated aromatics under mild reaction conditions. It reduces mono- or dichloroarenes to the corresponding dehalogenated arenes in >90 % yield in 10 % aqueous isopropanol solvent at or below 50 °C within 5 h. Tests on a variety of substrates containing various functional groups show that the catalyst is selective for reduction of C-Cl and C-Br bonds. In addition, this catalyst completely hydrodehalogenates high-concentration solutions of dioxin, polychlorinated biphenyls, chloroaromatic constituents of the defoliant agent orange, and polybrominated diphenyl ethers in 12 h. The catalyst is reusable and shows no morphological or compositional changes after 5 cycles. This methodology offers a powerful, low-cost, and safe technology for the degradation of polyhalogenated aromatics, and may be useful for preventing proliferation of these toxins in the environment from causing serious health issues.

20.
J Am Chem Soc ; 140(8): 2926-2932, 2018 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-29411604

RESUMEN

We report in this article a detailed study on how to stabilize a first-row transition metal (M) in an intermetallic L10-MPt alloy nanoparticle (NP) structure and how to surround the L10-MPt with an atomic layer of Pt to enhance the electrocatalysis of Pt for oxygen reduction reaction (ORR) in fuel cell operation conditions. Using 8 nm FePt NPs as an example, we demonstrate that Fe can be stabilized more efficiently in a core/shell structured L10-FePt/Pt with a 5 Å Pt shell. The presence of Fe in the alloy core induces the desired compression of the thin Pt shell, especially the two atomic layers of Pt shell, further improving the ORR catalysis. This leads to much enhanced Pt catalysis for ORR in 0.1 M HClO4 solution (at both room temperature and 60 °C) and in the membrane electrode assembly (MEA) at 80 °C. The L10-FePt/Pt catalyst has a mass activity of 0.7 A/mgPt from the half-cell ORR test and shows no obvious mass activity loss after 30 000 potential cycles between 0.6 and 0.95 V at 80 °C in the MEA, meeting the DOE 2020 target (<40% loss in mass activity). We are extending the concept and preparing other L10-MPt/Pt NPs, such as L10-CoPt/Pt NPs, with reduced NP size as a highly efficient ORR catalyst for automotive fuel cell applications.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...