Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Opt Lett ; 49(2): 226-229, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38194534

RESUMEN

We present a single-shot detection method of terahertz correlated second harmonic generation in plasma-based sources by directly mixing an optical probe into femtosecond laser-induced plasma filaments in air. The single-shot second harmonic trace is obtained by measuring a second harmonic generation on a conventional CCD with a spatiotemporally distorted probe beam. The system shows a spectrometer resolution of 22 fs/pixel on the CCD and a true resolution on the order of the probe pulse duration. With considerable THz peak electric field strength, this formalism can open the door to single-shot THz detection without bandwidth limitations.

2.
Opt Lett ; 47(23): 6297-6300, 2022 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-37219231

RESUMEN

We report the observation of terahertz field-induced second harmonic (TFISH) generation produced by directly mixing an optical probe beam onto femtosecond plasma filaments. The produced TFISH signal is spatially separated from the laser-induced supercontinuum by impinging on the plasma at a noncollinear angle. The conversion efficiency of the fundamental probe beam to its second harmonic (SH) beam is greater than 0.02%, which represents a record in optical probe to TFISH conversion efficiency that is nearly five orders of magnitude larger than previous experiments. We also present the terahertz (THz) spectral buildup of the source along the plasma filament and retrieve coherent terahertz signal measurements. This method of analysis has the potential to provide local electric field strength measurements inside of the filament.

3.
Front Optoelectron ; 14(1): 37-63, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36637782

RESUMEN

Developing efficient and robust terahertz (THz) sources is of incessant interest in the THz community for their wide applications. With successive effort in past decades, numerous groups have achieved THz wave generation from solids, gases, and plasmas. However, liquid, especially liquid water has never been demonstrated as a THz source. One main reason leading the impediment is that water has strong absorption characteristics in the THz frequency regime.A thin water film under intense laser excitation was introduced as the THz source to mitigate the considerable loss of THz waves from the absorption. Laser-induced plasma formation associated with a ponderomotive force-induced dipole model was proposed to explain the generation process. For the one-color excitation scheme, the water film generates a higher THz electric field than the air does under the identical experimental condition. Unlike the case of air, THz wave generation from liquid water prefers a sub-picosecond (200-800 fs) laser pulse rather than a femtosecond pulse (~50 fs). This observation results from the plasma generation process in water.For the two-color excitation scheme, the THz electric field is enhanced by one-order of magnitude in comparison with the one-color case. Meanwhile, coherent control of the THz field is achieved by adjusting the relative phase between the fundamental pulse and the second-harmonic pulse.To eliminate the total internal reflection of THz waves at the water-air interface of a water film, a water line produced by a syringe needle was used to emit THz waves. As expected, more THz radiation can be coupled out and detected. THz wave generation from other liquids were also tested.

4.
Opt Express ; 27(22): 32855-32862, 2019 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-31684490

RESUMEN

By irradiating a water jet with double pulses, we demonstrate 4-fold higher THz wave generation than for a single pump pulse. The dependence of the enhanced THz signal on the temporal delay between two collinear pulses reveals the optimal time for launching signal pulse is near 2-4 ps, which corresponds to the time needed to create the complete pre-ionization state when sufficient electron density is already induced, and there is no plasma reflection of the pump pulse radiation. The increase in THz waves generation efficiency corresponds to the case of water jet excitation by the pulses with an optimal duration for a certain jet thickness, which is determined by the spatial pulse size. Using a theoretical model of the interaction of a high-intensity sub-picosecond pulse with an isotropic medium, we held a numerical simulation, which well describes the experimental results when using 3 ps value of population relaxation time. Thus, in this work, double pump method allows not only to increase the energy of the generated THz waves, but also to determine the characteristic excited state lifetime of liquid water. The optical-to-terahertz conversion efficiency in case of double pulse excitation of water column is of the order of 0.5⋅10 -3, which exceeds the typical values for THz waves generation during two-color filamentation in air and comparable with the achievable values due to the optical rectification in some crystals.

5.
J Phys Condens Matter ; 28(44): 445002, 2016 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-27604845

RESUMEN

We experimentally and theoretically demonstrated an approach to achieve multispectral plasmon-induced transparency (PIT) by utilizing meta-molecules that consist of hyperfine terahertz meta-atoms. The feature size of such hyperfine meta-atoms is 400 nm, which is one order smaller than that of normal terahertz metamaterials. The hyperfine meta-atoms with close eigenfrequencies and narrow resonant responses introduce different metastable energy levels, which makes the multispectral PIT possible. In the triple PIT system, the slow light effect is further confirmed as the effective group delay at three transmission windows can reach 7.3 ps, 7.4 ps and 4.5 ps, respectively. Precisely controllable manipulation of the PIT peaks in such hyperfine meta-molecules was also proven. The new hyperfine planar design is not only suitable for high-integration applications, but also exhibits significant slow light effect, which has great potential in advanced multichannel optical information processing. Moreover, it reveals the possibility to construct hyperfine N-level energy systems by artificial hyperfine plasmonic structures, which brings a significant prospect for applications on miniaturized plasmonic devices.

6.
Radiat Prot Dosimetry ; 159(1-4): 220-32, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24943512

RESUMEN

Near Hatay, the Antakya-Samandag-Cyprus Fault (ASCF), East Anatolian and Dead Sea Fault Zones, the large faults that form the edges of the African, Anatolian, Cyprus and Arabian Plates, all produce large earthquakes, which have decimated Hatay repeatedly. Near Samandag, Hatay, differential vertical displacement on the ASCF has uplifted the southeastern side relative to northwestern side, producing large fault scarps that parallel the Asi (Orontes) River. Tectonic uplift coupled with Quaternary sealevel fluctuations has produced several stacked marine terraces stranded above current sealevel. This study dated 24 mollusc samples from 10 outcrops on six marine terraces near Samandag electron spin resonance (ESR). Ages were calculated using time-averaged and volumetrically averaged external dose rates, modelled by assuming typical water depths for the individual species and sediment thicknesses estimated from geological criteria. Uplift rates were then calculated for each fault block. At all the Magaracik terraces, the dates suggest that many shells were likely reworked. On the 30 m terrace at Magaracik IV (UTM 766588-3999880), Lithophagus burrows with in situ shells cross the unconformity. One such shell dated to 62 ± 6 ka, setting the minimum possible age for the terrace. For all the Magaracik terraces at ∼30 m above mean sealevel (amsl), the youngest ages for the reworked shells, which averaged 60 ± 3 ka for six separate analyses, sets the maximum possible age for this unit. Thus, the terrace must date to 60-62 ± 3 ka, at the MIS 3/4 boundary when temperatures and sealevels were fluctuating rapidly. Older units dating to MIS 7, 6, and 5 likely were being eroded to supply some fossils found in this terrace. At Magaracik Dump (UTM 765391-4001048), ∼103 m amsl, Ostrea and other shells were found cemented in growth position to the limestone boulders outcropping there <2.0 m above a wave-eroded notch. If the oysters grew at the same time as the wave-cut notch and the related terrace, the date, 91 ± 13 ka, for the oysters, this fault block has been uplifted at 1.19 ± 0.15 m ky(-1), since MIS 5c. At Samandag Kurt Stream at 38 m amsl, molluscs were deposited fine sandy gravel, which was likely formed in a large tidal channel. Four molluscs averaged 116 ± 5 ka. If these molluscs have not been reworked, this fault block has uplifted at 0.34 ± 0.05 m ky(-1) since the MIS 5d/5e boundary. The differences in these uplift rates suggests that at least one, and possibly two, hitherto undiscovered faults may separate the Magaracik Dump site from the other Magaracik sites and from the Samandag Kurt Stream site.


Asunto(s)
Evolución Biológica , Espectroscopía de Resonancia por Spin del Electrón/métodos , Ambiente , Fósiles , Sedimentos Geológicos/química , Paleontología , Datación Radiométrica/métodos , Animales , Dosis de Radiación , Turquía
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA