Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Front Neurosci ; 18: 1399229, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38983274

RESUMEN

Introduction: Estrogen deficiency is associated with unfavorable changes in body composition and metabolic health. While physical activity ameliorates several of the negative effects, loss of ovarian function is associated with decreased physical activity levels. It has been proposed that the changes in brain neurochemical levels and /or impaired skeletal muscle function may underlie this phenomenon. Methods: We studied the effect of estrogen deficiency induced via ovariectomy (OVX) in female Wistar rats (n = 64). Rats underwent either sham or OVX surgery and were allocated thereafter into four groups matched for body mass and maximal running capacity: sham/control, sham/max, OVX/control, and OVX/max, of which the max groups had maximal running test before euthanasia to induce acute response to exercise. Metabolism, spontaneous activity, and maximal running capacity were measured before (PRE) and after (POST) the surgeries. Three months following the surgery, rats were euthanized, and blood and tissue samples harvested. Proteins were analyzed from gastrocnemius muscle and retroperitoneal adipose tissue via Western blot. Brain neurochemical markers were measured from nucleus accumbens (NA) and hippocampus (HC) using ultra-high performance liquid chromatography. Results: OVX had lower basal energy expenditure and higher body mass and retroperitoneal adipose tissue mass compared with sham group (p ≤ 0.005). OVX reduced maximal running capacity by 17% (p = 0.005) with no changes in muscle mass or phosphorylated form of regulatory light chain (pRLC) in gastrocnemius muscle. OVX was associated with lower serotonin metabolite 5-hydroxyindoleacetic acid (5-HIAA) level in the NA compared with sham (p = 0.007). In response to acute exercise, OVX was associated with low serotonin level in the HC and high level in the NA (p ≤ 0.024). Discussion: Our results highlight that OVX reduces maximal running capacity and affects the response of brain neurochemical levels to acute exercise in a brain region-specific manner. These results may offer mechanistic insight into why OVX reduces willingness to exercise.

2.
Am J Physiol Endocrinol Metab ; 326(1): E73-E91, 2024 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-37991454

RESUMEN

Cells use glycolytic intermediates for anabolism, e.g., via the serine synthesis and pentose phosphate pathways. However, we still understand poorly how these metabolic pathways contribute to skeletal muscle cell biomass generation. The first aim of this study was therefore to identify enzymes that limit protein synthesis, myotube size, and proliferation in skeletal muscle cells. We inhibited key enzymes of glycolysis, the pentose phosphate pathway, and the serine synthesis pathway to evaluate their importance in C2C12 myotube protein synthesis. Based on the results of this first screen, we then focused on the serine synthesis pathway enzyme phosphoglycerate dehydrogenase (PHGDH). We used two different PHGDH inhibitors and mouse C2C12 and human primary muscle cells to study the importance and function of PHGDH. Both myoblasts and myotubes incorporated glucose-derived carbon into proteins, RNA, and lipids, and we showed that PHGDH is essential in these processes. PHGDH inhibition decreased protein synthesis, myotube size, and myoblast proliferation without cytotoxic effects. The decreased protein synthesis in response to PHGDH inhibition appears to occur mainly mechanistic target of rapamycin complex 1 (mTORC1)-dependently, as was evident from experiments with insulin-like growth factor 1 and rapamycin. Further metabolomics analyses revealed that PHGDH inhibition accelerated glycolysis and altered amino acid, nucleotide, and lipid metabolism. Finally, we found that supplementing an antioxidant and redox modulator, N-acetylcysteine, partially rescued the decreased protein synthesis and mTORC1 signaling during PHGDH inhibition. The data suggest that PHGDH activity is critical for skeletal muscle cell biomass generation from glucose and that it regulates protein synthesis and mTORC1 signaling.NEW & NOTEWORTHY The use of glycolytic intermediates for anabolism was demonstrated in both myoblasts and myotubes, which incorporate glucose-derived carbon into proteins, RNA, and lipids. We identify phosphoglycerate dehydrogenase (PHGDH) as a critical enzyme in those processes and also for muscle cell hypertrophy, proliferation, protein synthesis, and mTORC1 signaling. Our results thus suggest that PHGDH in skeletal muscle is more than just a serine-synthesizing enzyme.


Asunto(s)
Fosfoglicerato-Deshidrogenasa , Serina , Animales , Humanos , Ratones , Biomasa , Carbono/metabolismo , Proliferación Celular , Glucosa/metabolismo , Lípidos , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Fosfoglicerato-Deshidrogenasa/genética , Fosfoglicerato-Deshidrogenasa/metabolismo , ARN/metabolismo , Serina/metabolismo
3.
Front Toxicol ; 5: 1294780, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38026842

RESUMEN

Assessing chemical safety is essential to evaluate the potential risks of chemical exposure to human health and the environment. Traditional methods relying on animal testing are being replaced by 3R (reduction, refinement, and replacement) principle-based alternatives, mainly depending on in vitro test methods and the Adverse Outcome Pathway framework. However, these approaches often focus on the properties of the compound, missing the broader chemical-biological interaction perspective. Currently, the lack of comprehensive molecular characterization of the in vitro test system results in limited real-world representation and contextualization of the toxicological effect under study. Leveraging omics data strengthens the understanding of the responses of different biological systems, emphasizing holistic chemical-biological interactions when developing in vitro methods. Here, we discuss the relevance of meticulous test system characterization on two safety assessment relevant scenarios and how omics-based, data-driven approaches can improve the future generation of alternative methods.

5.
Sci Data ; 9(1): 120, 2022 03 30.
Artículo en Inglés | MEDLINE | ID: mdl-35354837

RESUMEN

We present a dataset of microelectrode array (MEA) recordings from human pluripotent stem cell (hPSC)-derived and rat embryonic cortical neurons during their in vitro maturation. The data were prepared to assess extracellularly recorded spontaneous activity and to compare the functional development of these neuronal networks. In addition to recordings of spontaneous activity, we provide pharmacological responses of hPSC-derived and rat cortical cultures at their mature stage. Together with the recorded electrode raw data, we share the analysis code to form a comprehensive dataset including spike times, spike waveforms, burst activity and network synchronization metrics calculated with two different connectivity estimators. Moreover, we provide the analysis code that produced the key scientific findings published previously with this dataset. This large dataset enables investigation of the functional aspects of maturing cortical neuronal networks and provides substantial parameters to assess the differences and similarities between hPSC-derived and rat cortical networks in vitro. This publicly available dataset will be beneficial, especially for experimental and computational neuroscientists.


Asunto(s)
Neuronas , Células Madre Pluripotentes , Animales , Humanos , Microelectrodos , Ratas
6.
Acta Biomater ; 140: 314-323, 2022 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-34902615

RESUMEN

Human pluripotent stem cells (hPSC) derived neurons are emerging as a powerful tool for studying neurobiology, disease pathology, and modeling. Due to the lack of platforms available for housing and growing hPSC-derived neurons, a pressing need exists to tailor a brain-mimetic 3D scaffold that recapitulates tissue composition and favourably regulates neuronal network formation. Despite the progress in engineering biomimetic scaffolds, an ideal brain-mimetic scaffold is still elusive. We bioengineered a physiologically relevant 3D scaffold by integrating brain-like extracellular matrix (ECM) components and chemical cues. Culturing hPSCs-neurons in hyaluronic acid (HA) gels and HA-chondroitin sulfate (HA-CS) composite gels showed that the CS component prevails as the predominant factor for the growth of neuronal cells, albeit to modest efficacy. Covalent grafting of dopamine (DA) moieties to the HA-CS gel (HADA-CS) enhanced the scaffold stability and stimulated the gel's remodeling properties by entrapping cell-secreted laminin, and binding brain-derived neurotrophic factor (BDNF). Neurons cultured in the scaffold expressed Col1, Col11, and ITGB4; important for cell adhesion and cell-ECM signaling. Thus, the HA-CS scaffold with integrated chemical cues (DA) supported neuronal growth and network formation. This scaffold offers a valuable tool for tissue engineering and disease modeling and helps in bridging the gap between animal models and human diseases by providing biomimetic neurophysiology. STATEMENT OF SIGNIFICANCE: Developing a brain mimetic 3D scaffold that supports neuronal growth could potentially be useful to study neurobiology, disease pathology, and disease modeling. However, culturing human induced pluripotent stem cells (hiPSC) and human embryonic stem cells (ESCs) derived neurons in a 3D matrix is extremely challenging as neurons are very sensitive cells and require tailored composition, viscoelasticity, and chemical cues. This article identified the key chemical cues necessary for designing neuronal matrix that trap the cell-produced ECM and neurotrophic factors and remodel the matrix and supports neurite outgrowth. The tailored injectable scaffold possesses self-healing/shear-thinning property which is useful to design injectable gels for regenerative medicine and disease modeling that provides biomimetic neurophysiology.


Asunto(s)
Biomimética , Células Madre Pluripotentes Inducidas , Animales , Encéfalo , Matriz Extracelular/metabolismo , Humanos , Neuronas , Andamios del Tejido/química
7.
J Neurosci Methods ; 350: 109043, 2021 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-33345946

RESUMEN

BACKGROUND: Three-dimensional (3D) in vitro models have been developed into more in vivo resembling structures. In particular, there is a need for human-based models for neuronal tissue engineering (TE). To produce such a model with organized microenvironment for cells in central nervous system (CNS), a 3D layered scaffold composed of hydrogel and cell guiding fibers has been proposed. NEW METHOD: Here, we describe a novel method for producing a layered 3D scaffold consisting of electrospun poly (L,D-lactide) fibers embedded into collagen 1 hydrogel to achieve better resemblance of cells' natural microenvironment for human pluripotent stem cell (hPSC)-derived neurons. The scaffold was constructed via a single layer-by-layer process using an electrospinning technique with a unique collector design. RESULTS: The method enabled the production of layered 3D cell-containing scaffold in a single process. HPSC-derived neurons were found in all layers of the scaffold and exhibited a typical neuronal phenotype. The guiding fiber layers supported the directed cell growth and extension of the neurites inside the scaffold without additional functionalization. COMPARISON WITH EXISTING METHODS: Previous methods have required several process steps to construct 3D layer-by-layer scaffolds. CONCLUSIONS: We introduced a method to produce layered 3D scaffolds to mimic the cell guiding cues in CNS by alternating the soft hydrogel matrix and fibrous guidance cues. The produced scaffold successfully enabled the long-term culture of hPSC-derived neuronal cells. This layered 3D scaffold is a useful model for in vitro and in vivo neuronal TE applications.


Asunto(s)
Células Madre Pluripotentes , Andamios del Tejido , Humanos , Hidrogeles , Neuronas , Ingeniería de Tejidos
8.
Sci Rep ; 9(1): 17125, 2019 11 20.
Artículo en Inglés | MEDLINE | ID: mdl-31748598

RESUMEN

Human pluripotent stem cell (hPSC)-derived neurons provide exciting opportunities for in vitro modeling of neurological diseases and for advancing drug development and neurotoxicological studies. However, generating electrophysiologically mature neuronal networks from hPSCs has been challenging. Here, we report the differentiation of functionally active hPSC-derived cortical networks on defined laminin-521 substrate. We apply microelectrode array (MEA) measurements to assess network events and compare the activity development of hPSC-derived networks to that of widely used rat embryonic cortical cultures. In both of these networks, activity developed through a similar sequence of stages and time frames; however, the hPSC-derived networks showed unique patterns of bursting activity. The hPSC-derived networks developed synchronous activity, which involved glutamatergic and GABAergic inputs, recapitulating the classical cortical activity also observed in rodent counterparts. Principal component analysis (PCA) based on spike rates, network synchronization and burst features revealed the segregation of hPSC-derived and rat network recordings into different clusters, reflecting the species-specific and maturation state differences between the two networks. Overall, hPSC-derived neural cultures produced with a defined protocol generate cortical type network activity, which validates their applicability as a human-specific model for pharmacological studies and modeling network dysfunctions.


Asunto(s)
Diferenciación Celular/fisiología , Corteza Cerebelosa/fisiología , Laminina/metabolismo , Red Nerviosa/fisiología , Neuronas/fisiología , Células Madre Pluripotentes/fisiología , Animales , Técnicas de Cultivo de Célula/métodos , Línea Celular , Corteza Cerebelosa/metabolismo , Ácido Glutámico/metabolismo , Humanos , Microelectrodos , Red Nerviosa/metabolismo , Células-Madre Neurales/metabolismo , Células-Madre Neurales/fisiología , Neuronas/metabolismo , Células Madre Pluripotentes/metabolismo , Ratas , Ratas Wistar , Ácido gamma-Aminobutírico/metabolismo
9.
Macromol Biosci ; 19(7): e1900096, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31173471

RESUMEN

There is a clear need for novel in vitro models, especially for neuronal applications. Development of in vitro models is a multiparameter task consisting of cell-, biomaterial-, and environment-related parameters. Here, three different human origin neuronal cell sources are studied and cultured in various hydrogel 3D scaffolds. For the efficient evaluation of complex results, an indexing method for data is developed and used in principal component analysis (PCA). It is found that no single hydrogel is superior to other hydrogels, and collagen I (Col1) and hyaluronan-poly(vinyl alcohol) (HA1-PVA) gels are combined into an interpenetrating network (IPN) hydrogel. The IPN gel combines cell supportiveness of the collagen gel and stability of the HA1-PVA gel. Moreover, cell adhesion is studied in particular and it is found that adhesion of neurons differs from that observed for fibroblasts. In conclusion, the HA1-PVA-col1 hydrogel is a suitable scaffold for neuronal cells and supports adhesion formation in 3D.


Asunto(s)
Colágeno/farmacología , Ácido Hialurónico/farmacología , Hidrogeles/farmacología , Neuronas/citología , Células Madre Pluripotentes/citología , Alcohol Polivinílico/farmacología , Andamios del Tejido/química , Biomarcadores/metabolismo , Adhesión Celular/efectos de los fármacos , Línea Celular , Fibroblastos/citología , Fibroblastos/efectos de los fármacos , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Integrina alfa6beta4/metabolismo , Proyección Neuronal/efectos de los fármacos , Neuronas/efectos de los fármacos , Células Madre Pluripotentes/efectos de los fármacos
10.
Adv Neurobiol ; 22: 299-329, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31073942

RESUMEN

This chapter provides an overview of the current stage of human in vitro functional neuronal cultures, their biological application areas, and modalities to analyze their behavior. During the last 10 years, this research area has changed from being practically non-existent to one that is facing high expectations. Here, we present a case study as a comprehensive short history of this process based on extensive studies conducted at NeuroGroup (University of Tampere) and Computational Biophysics and Imaging Group (Tampere University of Technology), ranging from the differentiation and culturing of human pluripotent stem cell (hPSC)-derived neuronal networks to their electrophysiological analysis. After an introduction to neuronal differentiation in hPSCs, we review our work on their functionality and approaches for extending cultures from 2D to 3D systems. Thereafter, we discuss our target applications in neuronal developmental modeling, toxicology, drug screening, and disease modeling. The development of signal analysis methods was required due to the unique functional and developmental properties of hPSC-derived neuronal cells and networks, which separate them from their much-used rodent counterparts. Accordingly, a line of microelectrode array (MEA) signal analysis methods was developed. This work included the development of action potential spike detection methods, entropy-based methods and additional methods for burst detection and quantification, joint analysis of spikes and bursts to analyze the spike waveform compositions of bursts, assessment methods for network synchronization, and computational simulations of synapses and neuronal networks.


Asunto(s)
Potenciales de Acción , Técnicas de Cultivo de Célula/métodos , Electrofisiología/métodos , Microelectrodos , Células-Madre Neurales/citología , Neuronas/citología , Humanos
11.
J Neuroimmunol ; 331: 36-45, 2019 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-30195439

RESUMEN

Multiple Sclerosis (MS) is an inflammatory neurodegenerative disease, where neural progenitor cell (NPC) transplantation has been suggested as a potential neuroprotective therapeutic strategy. Since the effect of inflammation on NPCs is poorly known, their effect on the survival and functionality of human NPCs were studied. Treatment with interleukin (IL)-6, tumor necrosis factor (TNF)-α and interferon (IFN)-γ did not induced cytotoxicity, but IFN-γ treatment showed decreased proliferation and neuronal migration. By contrast, increased proliferation and inhibition of electrical activity were detected after TNF-α treatment. Treatments induced secretion of inflammatory factors. Inflammatory cytokines appear to modulate proliferation as well as the cellular and functional properties of human NPCs.


Asunto(s)
Interferón gamma/farmacología , Interleucina-6/farmacología , Células-Madre Neurales/efectos de los fármacos , Factor de Necrosis Tumoral alfa/farmacología , Astrocitos/efectos de los fármacos , Astrocitos/metabolismo , División Celular/efectos de los fármacos , Células Cultivadas , Citocinas/biosíntesis , Citocinas/genética , Células Madre Embrionarias/citología , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Inflamación , Péptidos y Proteínas de Señalización Intercelular/biosíntesis , Péptidos y Proteínas de Señalización Intercelular/genética , Red Nerviosa/efectos de los fármacos , Proteínas del Tejido Nervioso/biosíntesis , Proteínas del Tejido Nervioso/genética , Células-Madre Neurales/metabolismo , Neurogénesis , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Células Madre Pluripotentes/citología , Receptores de Citocinas/biosíntesis , Receptores de Citocinas/genética , Análisis de la Célula Individual , Imagen de Lapso de Tiempo
12.
Front Neurosci ; 12: 882, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30568570

RESUMEN

Microelectrode material and cell culture medium have significant roles in the signal-to-noise ratio and cell well-being in in vitro electrophysiological studies. Here, we report an ion beam assisted e-beam deposition (IBAD) based process as an alternative titanium nitride (TiN) deposition method for sputtering in the fabrication of state-of-the-art TiN microelectrode arrays (MEAs). The effects of evaporation and nitrogen flow rates were evaluated while developing the IBAD TiN deposition process. Moreover, the produced IBAD TiN microelectrodes were characterized by impedance, charge transfer capacity (CTC) and noise measurements for electrical properties, AFM and SEM for topological imaging, and EDS for material composition. The impedance (at 1 kHz) of brand new 30 µm IBAD TiN microelectrodes was found to be double but still below 100 kΩ compared with commercial reference MEAs with sputtered TiN microelectrodes of the same size. On the contrary, the noise level of IBAD TiN MEAs was lower compared with that of commercial sputtered TiN MEAs in equal conditions. In CTC IBAD TiN electrodes (3.3 mC/cm2) also outperformed the sputtered counterparts (2.0 mC/cm2). To verify the suitability of IBAD TiN microelectrodes for cell measurements, human pluripotent stem cell (hPSC)-derived neuronal networks were cultured on IBAD TiN MEAs and commercial sputtered TiN MEAs in two different media: neural differentiation medium (NDM) and BrainPhys (BPH). The effect of cell culture media to hPSC derived neuronal networks was evaluated to gain more stable and more active networks. Higher spontaneous activity levels were measured from the neuronal networks cultured in BPH compared with those in NDM in both MEA types. However, BPH caused more problems in cell survival in long-term cultures by inducing neuronal network retraction and clump formation after 1-2 weeks. In addition, BPH was found to corrode the Si3N4 insulator layer more than NDM medium. The developed IBAD TiN process gives MEA manufacturers more choices to choose which method to use to deposit TiN electrodes and the medium evaluation results remind that not only electrode material but also insulator layer and cell culturing medium have crucial role in successful long term MEA measurements.

13.
Front Cell Neurosci ; 12: 56, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29559893

RESUMEN

The electrical activity of the brain arises from single neurons communicating with each other. However, how single neurons interact during early development to give rise to neural network activity remains poorly understood. We studied the emergence of synchronous neural activity in human pluripotent stem cell (hPSC)-derived neural networks simultaneously on a single-neuron level and network level. The contribution of gamma-aminobutyric acid (GABA) and gap junctions to the development of synchronous activity in hPSC-derived neural networks was studied with GABA agonist and antagonist and by blocking gap junctional communication, respectively. We characterized the dynamics of the network-wide synchrony in hPSC-derived neural networks with high spatial resolution (calcium imaging) and temporal resolution microelectrode array (MEA). We found that the emergence of synchrony correlates with a decrease in very strong GABA excitation. However, the synchronous network was found to consist of a heterogeneous mixture of synchronously active cells with variable responses to GABA, GABA agonists and gap junction blockers. Furthermore, we show how single-cell distributions give rise to the network effect of GABA, GABA agonists and gap junction blockers. Finally, based on our observations, we suggest that the earliest form of synchronous neuronal activity depends on gap junctions and a decrease in GABA induced depolarization but not on GABAA mediated signaling.

14.
Front Neurosci ; 11: 606, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29163011

RESUMEN

Measurement of the activity of human pluripotent stem cell (hPSC)-derived neuronal networks with microelectrode arrays (MEAs) plays an important role in functional in vitro brain modelling and in neurotoxicological screening. The previously reported hPSC-derived neuronal networks do not, however, exhibit repeatable, stable functional network characteristics similar to rodent cortical cultures, making the interpretation of results difficult. In earlier studies, microtunnels have been used both to control and guide cell growth and amplify the axonal signals of rodent neurons. The aim of the current study was to develop tunnel devices that would facilitate signalling and/or signal detection in entire hPSC-derived neuronal networks containing not only axons, but also somata and dendrites. Therefore, MEA-compatible polydimethylsiloxane (PDMS) tunnel devices with 8 different dimensions were created. The hPSC-derived neurons were cultured in the tunnel devices on MEAs, and the spontaneous electrical activity of the networks was measured for 5 weeks. Although the tunnel devices improved the signal-to-noise ratio only by 1.3-fold at best, they significantly increased the percentage of electrodes detecting neuronal activity (52-100%) compared with the controls (27%). Significantly higher spike and burst counts were also obtained using the tunnel devices. Neuronal networks inside the tunnels were amenable to pharmacological manipulation. The results suggest that tunnel devices encompassing the entire neuronal network can increase the measured spontaneous activity in hPSC-derived neuronal networks on MEAs. Therefore, they can increase the efficiency of functional studies of hPSC-derived networks on MEAs.

15.
J Neurosci Methods ; 280: 27-35, 2017 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-28161299

RESUMEN

BACKGROUND: Typically, live cell analyses are performed outside an incubator in an ambient air, where the lack of sufficient CO2 supply results in a fast change of pH and the high evaporation causes concentration drifts in the culture medium. That limits the experiment time for tens of minutes. In many applications, e.g. in neurotoxicity studies, a prolonged measurement of extracellular activity is, however, essential. NEW METHOD: We demonstrate a simple cell culture chamber that enables stable culture conditions during prolonged extracellular recordings on a microelectrode array (MEA) outside an incubator. The proposed chamber consists of a gas permeable silicone structure that enables gas transfer into the chamber. RESULTS: We show that the culture chamber supports the growth of the human embryonic stem cell (hESC)-derived neurons both inside and outside an incubator. The structure provides very low evaporation, stable pH and osmolarity, and maintains strong signaling of hESC-derived neuronal networks over three-day MEA experiments. COMPARISON WITH EXISTING METHODS: Existing systems are typically complex including continuous perfusion of medium or relatively large amount of gas to supply. The proposed chamber requires only a supply of very low flow rate (1.5ml/min) of non-humidified 5% CO2 gas. Utilizing dry gas supply makes the proposed chamber simple to use. CONCLUSION: Using the proposed culture structure on top of MEA, we can maintain hESC-derived neural networks over three days outside an incubator. Technically, the structure requires very low flow rate of dry gas supporting, however, low evaporation and maintaining the pH of the culture.


Asunto(s)
Técnicas de Cultivo de Célula/instrumentación , Microelectrodos , Neuronas/fisiología , Dióxido de Carbono/administración & dosificación , Células Cultivadas , Simulación por Computador , Células Madre Embrionarias/fisiología , Humanos , Concentración de Iones de Hidrógeno , Incubadoras , Modelos Neurológicos , Células-Madre Neurales/fisiología , Concentración Osmolar , Factores de Tiempo
16.
Biomed Mater ; 12(2): 025014, 2017 03 24.
Artículo en Inglés | MEDLINE | ID: mdl-28233757

RESUMEN

Neural tissue engineering and three-dimensional in vitro tissue modeling require the development of biomaterials that take into account the specified requirements of human neural cells and tissue. In this study, an alternative method of producing biomimetic hydrogels based on gellan gum (GG) was developed by replacing traditional crosslinking methods with the bioamines spermidine and spermine. These bioamines were proven to function as crosslinkers for GG hydrogel at +37 °C, allowing for the encapsulation of human neurons. We studied the mechanical and rheological properties of the formed hydrogels, which showed biomimicking properties comparable to naïve rabbit brain tissue under physiologically relevant stress and strain. Human pluripotent stem cell-derived neuronal cells demonstrated good cytocompatibility in the GG-based hydrogels. Moreover, functionalization of GG hydrogels with laminin resulted in cell type-specific behavior: neuronal cell maturation and neurite migration.


Asunto(s)
Materiales Biocompatibles/química , Tejido Nervioso/fisiología , Ingeniería de Tejidos/métodos , Animales , Fenómenos Biomecánicos , Materiales Biomiméticos/química , Diferenciación Celular , Reactivos de Enlaces Cruzados , Humanos , Hidrogeles/química , Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/fisiología , Laminina/fisiología , Masculino , Ensayo de Materiales , Tejido Nervioso/citología , Células-Madre Neurales/citología , Células-Madre Neurales/fisiología , Neuritas/fisiología , Neuritas/ultraestructura , Polisacáridos Bacterianos/química , Conejos , Reología , Espermidina , Espermina
17.
Biomed Eng Online ; 15(1): 105, 2016 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-27576323

RESUMEN

BACKGROUND: Microelectrode array (MEA) is a widely used technique to study for example the functional properties of neuronal networks derived from human embryonic stem cells (hESC-NN). With hESC-NN, we can investigate the earliest developmental stages of neuronal network formation in the human brain. METHODS: In this paper, we propose an in silico model of maturating hESC-NNs based on a phenomenological model called INEX. We focus on simulations of the development of bursts in hESC-NNs, which are the main feature of neuronal activation patterns. The model was developed with data from developing hESC-NN recordings on MEAs which showed increase in the neuronal activity during the investigated six measurement time points in the experimental and simulated data. RESULTS: Our simulations suggest that the maturation process of hESC-NN, resulting in the formation of bursts, can be explained by the development of synapses. Moreover, spike and burst rate both decreased at the last measurement time point suggesting a pruning of synapses as the weak ones are removed. CONCLUSIONS: To conclude, our model reflects the assumption that the interaction between excitatory and inhibitory neurons during the maturation of a neuronal network and the spontaneous emergence of bursts are due to increased connectivity caused by the forming of new synapses.


Asunto(s)
Modelos Neurológicos , Red Nerviosa/citología , Red Nerviosa/crecimiento & desarrollo , Neuronas , Encéfalo/citología , Encéfalo/crecimiento & desarrollo , Línea Celular , Simulación por Computador , Humanos , Microelectrodos , Neuronas/citología , Sinapsis
18.
J Neurosci Methods ; 259: 143-155, 2016 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-26675487

RESUMEN

BACKGROUND: Neuronal networks are routinely assessed based on extracellular electrophysiological microelectrode array (MEA) measurements by spike sorting, and spike and burst statistics. We propose to jointly analyze sorted spikes and detected bursts, and hypothesize that the obtained spike type compositions of the bursts can provide new information on the functional networks. NEW METHOD: Spikes are detected and sorted to obtain spike types and bursts are detected. In the proposed joint analysis, each burst spike is associated with a spike type, and the spike type compositions of the bursts are assessed. RESULTS: The proposed method was tested with simulations and MEA measurements of in vitro human stem cell derived neuronal networks under different pharmacological treatments. The results show that the treatments altered the spike type compositions of the bursts. For example, 6-cyano-7-nitroquinoxaline-2,3-dione almost completely abolished two types of spikes which had composed the bursts in the baseline, while bursts of spikes of two other types appeared more frequently. This phenomenon was not observable by spike sorting or burst analysis alone, but was revealed by the proposed joint analysis. COMPARISON WITH EXISTING METHODS: The existing methods do not provide the information obtainable with the proposed method: for the first time, the spike type compositions of bursts are analyzed. CONCLUSIONS: We showed that the proposed method provides useful and novel information, including the possible changes in the spike type compositions of the bursts due to external factors. Our method can be employed on any data exhibiting sortable action potential waveforms and detectable bursts.


Asunto(s)
Fenómenos Electrofisiológicos/efectos de los fármacos , Fenómenos Electrofisiológicos/fisiología , Antagonistas de Aminoácidos Excitadores/farmacología , Red Nerviosa/efectos de los fármacos , Red Nerviosa/fisiología , Procesamiento de Señales Asistido por Computador , 6-Ciano 7-nitroquinoxalina 2,3-diona/farmacología , Potenciales de Acción/efectos de los fármacos , Potenciales de Acción/fisiología , Células Cultivadas , Humanos , Células-Madre Neurales
19.
J Tissue Eng Regen Med ; 8(3): 186-94, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22611014

RESUMEN

The future of tissue engineering applications for neuronal cells will require a supportive 3D matrix. This particular matrix should be soft, elastic and supportive for cell growth. In this study, we characterized the suitability of a 3D synthetic hydrogel matrix, PuraMatrix™, as a growth platform for human embryonic stem cell (hESC)-derived neural cells. The viability of the cells grown on top of, inside and under the hydrogel was monitored. The maturation and electrical activity of the neuronal networks inside the hydrogel were further characterized. We showed that cells stayed viable on the top of the PuraMatrix™ surface and growth of the neural cells and neural processes was good. Further, hESC-derived neurons, astrocytes and oligodendrocytes all grew, matured and migrated when cultured inside the hydrogel. Importantly, neuronal cells were able to form electrically active connections that were verified using microelectrode array. Thus, PuraMatrix is a good supportive growth matrix for human neural cells and may serve as a matrix for neuronal scaffolds in neural tissue engineering.


Asunto(s)
Técnicas de Cultivo de Célula , Células Madre Embrionarias/citología , Neuronas/citología , Andamios del Tejido , Diferenciación Celular , Supervivencia Celular , Electrodos , Electrofisiología , Humanos , Hidrogeles/química , Microscopía Confocal , Ingeniería de Tejidos/métodos
20.
Biol Open ; 2(6): 605-12, 2013 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-23789111

RESUMEN

The possibilities of human pluripotent stem cell-derived neural cells from the basic research tool to a treatment option in regenerative medicine have been well recognized. These cells also offer an interesting tool for in vitro models of neuronal networks to be used for drug screening and neurotoxicological studies and for patient/disease specific in vitro models. Here, as aiming to develop a reductionistic in vitro human neuronal network model, we tested whether human embryonic stem cell (hESC)-derived neural cells could be cultured in human cerebrospinal fluid (CSF) in order to better mimic the in vivo conditions. Our results showed that CSF altered the differentiation of hESC-derived neural cells towards glial cells at the expense of neuronal differentiation. The proliferation rate was reduced in CSF cultures. However, even though the use of CSF as the culture medium altered the glial vs. neuronal differentiation rate, the pre-existing spontaneous activity of the neuronal networks persisted throughout the study. These results suggest that it is possible to develop fully human cell and culture-based environments that can further be modified for various in vitro modeling purposes.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA