Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 14 de 14
1.
Clin Neurophysiol ; 161: 198-210, 2024 May.
Article En | MEDLINE | ID: mdl-38520800

OBJECTIVE: The aim is to gain insight into the pathophysiological mechanisms underlying interictal epileptiform discharges observed in electroencephalographic (EEG) and stereo-EEG (SEEG, depth electrodes) recordings performed during pre-surgical evaluation of patients with drug-resistant epilepsy. METHODS: We developed novel neuro-inspired computational models of the human cerebral cortex at three different levels of description: i) microscale (detailed neuron models), ii) mesoscale (neuronal mass models) and iii) macroscale (whole brain models). Although conceptually different, micro- and mesoscale models share some similar features, such as the typology of neurons (pyramidal cells and three types of interneurons), their spatial arrangement in cortical layers, and their synaptic connectivity (excitatory and inhibitory). The whole brain model consists of a large-scale network of interconnected neuronal masses, with connectivity based on the human connectome. RESULTS: For these three levels of description, the fine-tuning of free parameters and the quantitative comparison with real data allowed us to reproduce interictal epileptiform discharges with a high degree of fidelity and to formulate hypotheses about the cell- and network-related mechanisms underlying the generation of fast ripples and SEEG-recorded epileptic spikes and spike-waves. CONCLUSIONS: The proposed models provide valuable insights into the pathophysiological mechanisms underlying the generation of epileptic events. The knowledge gained from these models effectively complements the clinical analysis of SEEG data collected during the evaluation of patients with epilepsy. SIGNIFICANCE: These models are likely to play a key role in the mechanistic interpretation of epileptiform activity.


Electroencephalography , Epilepsy , Models, Neurological , Humans , Electroencephalography/methods , Epilepsy/physiopathology , Epilepsy/diagnosis , Cerebral Cortex/physiopathology , Drug Resistant Epilepsy/physiopathology , Drug Resistant Epilepsy/diagnosis
2.
Epilepsia ; 65(6): 1744-1755, 2024 Jun.
Article En | MEDLINE | ID: mdl-38491955

OBJECTIVE: We have developed a novel method for estimating brain tissue electrical conductivity using low-intensity pulse stereoelectroencephalography (SEEG) stimulation coupled with biophysical modeling. We evaluated the hypothesis that brain conductivity is correlated with the degree of epileptogenicity in patients with drug-resistant focal epilepsy. METHODS: We used bipolar low-intensity biphasic pulse stimulation (.2 mA) followed by a postprocessing pipeline for estimating brain conductivity. This processing is based on biophysical modeling of the electrical potential induced in brain tissue between the stimulated contacts in response to pulse stimulation. We estimated the degree of epileptogenicity using a semi-automatic method quantifying the dynamic of fast discharge at seizure onset: the epileptogenicity index (EI). We also investigated how the location of stimulation within specific anatomical brain regions or within lesional tissue impacts brain conductivity. RESULTS: We performed 1034 stimulations of 511 bipolar channels in 16 patients. We found that brain conductivity was lower in the epileptogenic zone (EZ; unpaired median difference = .064, p < .001) and inversely correlated with the epileptogenic index value (p < .001, Spearman rho = -.32). Conductivity values were also influenced by anatomical site, location within lesion, and delay between SEEG electrode implantation and stimulation, and had significant interpatient variability. Mixed model multivariate analysis showed that conductivity is significantly associated with EI (F = 13.45, p < .001), anatomical regions (F = 5.586, p < .001), delay since implantation (F = 14.71, p = .003), and age at SEEG (F = 6.591, p = .027), but not with the type of lesion (F = .372, p = .773) or the delay since last seizure (F = 1.592, p = .235). SIGNIFICANCE: We provide a novel model-based method for estimating brain conductivity from SEEG low-intensity pulse stimulations. The brain tissue conductivity is lower in EZ as compared to non-EZ. Conductivity also varies significantly across anatomical brain regions. Involved pathophysiological processes may include changes in the extracellular space (especially volume or tortuosity) in epileptic tissue.


Brain , Electric Conductivity , Electroencephalography , Epilepsies, Partial , Humans , Epilepsies, Partial/physiopathology , Electroencephalography/methods , Male , Female , Adult , Brain/physiopathology , Young Adult , Drug Resistant Epilepsy/physiopathology , Middle Aged , Adolescent , Models, Neurological , Stereotaxic Techniques , Electric Stimulation/methods
3.
J Neural Eng ; 19(5)2022 09 19.
Article En | MEDLINE | ID: mdl-36067727

Objective.In partial epilepsies, interictal epileptiform discharges (IEDs) are paroxysmal events observed in epileptogenic zone (EZ) and non-epileptogenic zone (NEZ). IEDs' generation and recurrence are subject to different hypotheses: they appear through glutamatergic and gamma-aminobutyric acidergic (GABAergic) processes; they may trigger seizures or prevent seizure propagation. This paper focuses on a specific class of IEDs, spike-waves (SWs), characterized by a short-duration spike followed by a longer duration wave, both of the same polarity. Signal analysis and neurophysiological mathematical models are used to interpret puzzling IED generation.Approach.Interictal activity was recorded by intracranial stereo-electroencephalography (SEEG) electrodes in five different patients. SEEG experts identified the epileptic and non-epileptic zones in which IEDs were detected. After quantifying spatial and temporal features of the detected IEDs, the most significant features for classifying epileptic and non-epileptic zones were determined. A neurophysiologically-plausible mathematical model was then introduced to simulate the IEDs and understand the underlying differences observed in epileptic and non-epileptic zone IEDs.Main results.Two classes of SWs were identified according to subtle differences in morphology and timing of the spike and wave component. Results showed that type-1 SWs were generated in epileptogenic regions also involved at seizure onset, while type-2 SWs were produced in the propagation or non-involved areas. The modeling study indicated that synaptic kinetics, cortical organization, and network interactions determined the morphology of the simulated SEEG signals. Modeling results suggested that the IED morphologies were linked to the degree of preserved inhibition.Significance.This work contributes to the understanding of different mechanisms generating IEDs in epileptic networks. The combination of signal analysis and computational models provides an efficient framework for exploring IEDs in partial epilepsies and classifying EZ and NEZ.


Epilepsies, Partial , Epilepsy , Computer Simulation , Electroencephalography/methods , Epilepsy/diagnosis , Humans , Seizures/diagnosis , Signal Processing, Computer-Assisted
4.
J Neural Eng ; 19(5)2022 10 11.
Article En | MEDLINE | ID: mdl-36167052

Objective.Electro/Magnetoencephalography (EEG/MEG) source-space network analysis is increasingly recognized as a powerful tool for tracking fast electrophysiological brain dynamics. However, an objective and quantitative evaluation of pipeline steps is challenging due to the lack of realistic 'controlled' data. Here, our aim is two-folded: (a) provide a quantitative assessment of the advantages and limitations of the analyzed techniques and (b) introduce (and share) a complete framework that can be used to optimize the entire pipeline of EEG/MEG source connectivity.Approach.We used a human brain computational model containing both physiologically based cellular GABAergic and Glutamatergic circuits coupled through Diffusion Tensor Imaging, to generate high-density EEG recordings. We designed a scenario of successive gamma-band oscillations in distinct cortical areas to emulate a virtual picture-naming task. We identified fast time-varying network states and quantified the performance of the key steps involved in the pipeline: (a) inverse models to reconstruct cortical-level sources, (b) functional connectivity measures to compute statistical interdependency between regional signals, and (c) dimensionality reduction methods to derive dominant brain network states (BNS).Main results.Using a systematic evaluation of the different decomposition techniques, results show significant variability among tested algorithms in terms of spatial and temporal accuracy. We outlined the spatial precision, the temporal sensitivity, and the global accuracy of the extracted BNS relative to each method. Our findings suggest a good performance of weighted minimum norm estimate/ Phase Locking Value combination to elucidate the appropriate functional networks and ICA techniques to derive relevant dynamic BNS.Significance.We suggest using such brain models to go further in the evaluation of the different steps and parameters involved in the EEG/MEG source-space network analysis. This can reduce the empirical selection of inverse model, connectivity measure, and dimensionality reduction method as some of the methods can have a considerable impact on the results and interpretation.


Brain Mapping , Electroencephalography , Humans , Brain/physiology , Brain Mapping/methods , Computer Simulation , Diffusion Tensor Imaging , Electroencephalography/methods , Magnetoencephalography/methods
5.
J Neural Eng ; 19(5)2022 09 06.
Article En | MEDLINE | ID: mdl-35995031

Work in the last two decades has shown that neural mass models (NMM) can realistically reproduce and explain epileptic seizure transitions as recorded by electrophysiological methods (EEG, SEEG). In previous work, advances were achieved by increasing excitation and heuristically varying network inhibitory coupling parameters in the models. Based on these early studies, we provide a laminar NMM capable of realistically reproducing the electrical activity recorded by SEEG in the epileptogenic zone during interictal to ictal states. With the exception of the external noise input into the pyramidal cell population, the model dynamics are autonomous. By setting the system at a point close to bifurcation, seizure-like transitions are generated, including pre-ictal spikes, low voltage fast activity, and ictal rhythmic activity. A novel element in the model is a physiologically motivated algorithm for chloride dynamics: the gain of GABAergic post-synaptic potentials is modulated by the pathological accumulation of chloride in pyramidal cells due to high inhibitory input and/or dysfunctional chloride transport. In addition, in order to simulate SEEG signals for comparison with real seizure recordings, the NMM is embedded first in a layered model of the neocortex and then in a realistic physical model. We compare modeling results with data from four epilepsy patient cases. By including key pathophysiological mechanisms, the proposed framework captures succinctly the electrophysiological phenomenology observed in ictal states, paving the way for robust personalization methods based on NMMs.


Electroencephalography , Epilepsy , Chlorides , Electroencephalography/methods , Epilepsy/diagnosis , Humans , Pyramidal Cells , Seizures/diagnosis
6.
Brain Topogr ; 35(1): 54-65, 2022 01.
Article En | MEDLINE | ID: mdl-34244910

Understanding the dynamics of brain-scale functional networks at rest and during cognitive tasks is the subject of intense research efforts to unveil fundamental principles of brain functions. To estimate these large-scale brain networks, the emergent method called "electroencephalography (EEG) source connectivity" has generated increasing interest in the network neuroscience community, due to its ability to identify cortical brain networks with satisfactory spatio-temporal resolution, while reducing mixing and volume conduction effects. However, no consensus has been reached yet regarding a unified EEG source connectivity pipeline, and several methodological issues have to be carefully accounted to avoid pitfalls. Thus, a validation toolbox that provides flexible "ground truth" models is needed for an objective methods/parameters evaluation and, thereby an optimization of the EEG source connectivity pipeline. In this paper, we show how a recently developed large-scale model of brain-scale activity, named COALIA, can provide to some extent such ground truth by providing realistic simulations of source-level and scalp-level activity. Using a bottom-up approach, the model bridges cortical micro-circuitry and large-scale network dynamics. Here, we provide an example of the potential use of COALIA to analyze, in the context of epileptiform activity, the effect of three key factors involved in the "EEG source connectivity" pipeline: (i) EEG sensors density, (ii) algorithm used to solve the inverse problem, and (iii) functional connectivity measure. Results showed that a high electrode density (at least 64 channels) is required to accurately estimate cortical networks. Regarding the inverse solution/connectivity measure combination, the best performance at high electrode density was obtained using the weighted minimum norm estimate (wMNE) combined with the weighted phase lag index (wPLI). Although those results are specific to the considered aforementioned context (epileptiform activity), we believe that this model-based approach can be successfully applied to other experimental questions/contexts. We aim at presenting a proof-of-concept of the interest of COALIA in the network neuroscience field, and its potential use in optimizing the EEG source-space network estimation pipeline.


Brain Mapping , Electroencephalography , Algorithms , Brain , Brain Mapping/methods , Electroencephalography/methods , Humans
7.
Epilepsia ; 62(3): 683-697, 2021 03.
Article En | MEDLINE | ID: mdl-33617692

OBJECTIVE: This study was undertaken to investigate how gain of function (GOF) of slack channel due to a KCNT1 pathogenic variant induces abnormal neuronal cortical network activity and generates specific electroencephalographic (EEG) patterns of epilepsy in infancy with migrating focal seizures. METHODS: We used detailed microscopic computational models of neurons to explore the impact of GOF of slack channel (explicitly coded) on each subtype of neurons and on a cortical micronetwork. Then, we adapted a thalamocortical macroscopic model considering results obtained in detailed models and immature properties related to epileptic brain in infancy. Finally, we compared simulated EEGs resulting from the macroscopic model with interictal and ictal patterns of affected individuals using our previously reported EEG markers. RESULTS: The pathogenic variants of KCNT1 strongly decreased the firing rate properties of γ-aminobutyric acidergic (GABAergic) interneurons and, to a lesser extent, those of pyramidal cells. This change led to hyperexcitability with increased synchronization in a cortical micronetwork. At the macroscopic scale, introducing slack GOF effect resulted in epilepsy of infancy with migrating focal seizures (EIMFS) EEG interictal patterns. Increased excitation-to-inhibition ratio triggered seizure, but we had to add dynamic depolarizing GABA between somatostatin-positive interneurons and pyramidal cells to obtain migrating seizure. The simulated migrating seizures were close to EIMFS seizures, with similar values regarding the delay between the different ictal activities (one of the specific EEG markers of migrating focal seizures due to KCNT1 pathogenic variants). SIGNIFICANCE: This study illustrates the interest of biomathematical models to explore pathophysiological mechanisms bridging the gap between the functional effect of gene pathogenic variants and specific EEG phenotype. Such models can be complementary to in vitro cellular and animal models. This multiscale approach provides an in silico framework that can be further used to identify candidate innovative therapies.


Epilepsy/genetics , GABAergic Neurons/physiology , Nerve Tissue Proteins/genetics , Potassium Channels, Sodium-Activated/genetics , Seizures/genetics , Computer Simulation , Electroencephalography , Epilepsy/etiology , Epilepsy/physiopathology , Gain of Function Mutation/genetics , Humans , Infant , Seizures/etiology , Seizures/physiopathology
8.
J Neural Eng ; 18(4)2021 05 04.
Article En | MEDLINE | ID: mdl-32688351

Neural mass models are among the most popular mathematical models of brain activity, since they enable the rapid simulation of large-scale networks involving different neural types at a spatial scale compatible with electrophysiological experiments (e.g. local field potentials). However, establishing neural mass model (NMM) equations associated with specific neuronal network architectures can be tedious and is an error-prone process, restricting their use to scientists who are familiar with mathematics. In order to overcome this challenge, we have developed a user-friendly software that enables a user to construct rapidly, under the form of a graph, a neuronal network with its populations and connectivity patterns. The resulting graph is then automatically translated into the corresponding set of differential equations, which can be solved and displayed within the same software environment. The software is proposed as open access, and should assist in offering the possibility for a wider audience of scientists to develop NMM corresponding to their specific neuroscience research questions.


Models, Theoretical , Software , Computer Simulation
9.
J Neural Eng ; 16(2): 026023, 2019 04.
Article En | MEDLINE | ID: mdl-30609420

OBJECTIVE: Among electrophysiological signals, local field potentials (LFPs) are extensively used to study brain activity, either in vivo or in vitro. LFPs are recorded with extracellular electrodes implanted in brain tissue. They reflect intermingled excitatory and inhibitory processes in neuronal assemblies. In cortical structures, LFPs mainly originate from the summation of post-synaptic potentials (PSPs), either excitatory (ePSPs) or inhibitory (iPSPs) generated at the level of pyramidal cells. The challenging issue, addressed in this paper, is to estimate, from a single extracellularly-recorded signal, both ePSP and iPSP components of the LFP. APPROACH: The proposed method is based on a model-based reverse engineering approach in which the measured LFP is fed into a physiologically-grounded neural mass model (mesoscopic level) to estimate the synaptic activity of a sub-population of pyramidal cells interacting with local GABAergic interneurons. MAIN RESULTS: The method was first validated using simulated LFPs for which excitatory and inhibitory components are known a priori and can thus serve as a ground truth. It was then evaluated on in vivo data (PTZ-induced seizures, rat; PTZ-induced excitability increase, mouse; epileptiform discharges, mouse) and on in clinico data (human seizures recorded with depth-EEG electrodes). SIGNIFICANCE: Under these various conditions, results showed that the proposed reverse engineering method provides a reliable estimation of the average excitatory and inhibitory post-synaptic potentials originating of the measured LFPs. They also indicated that the method allows for monitoring of the excitation/inhibition ratio. The method has potential for multiple applications in neuroscience, typically when a dynamical tracking of local excitability changes is required.


Electrodes, Implanted , Electroencephalography/methods , Models, Neurological , Synaptic Potentials/physiology , Synaptic Transmission/physiology , Animals , Electroencephalography/instrumentation , Epilepsy/physiopathology , Humans , Mice , Mice, Inbred C57BL , Rats
10.
Annu Int Conf IEEE Eng Med Biol Soc ; 2019: 6450-6453, 2019 Jul.
Article En | MEDLINE | ID: mdl-31947319

Neural conduction block performed by balanced-charge kilohertz frequency alternating currents (KHFAC) has been identified as a potential technique for therapy delivery in different clinical setups. The underlying mechanisms that contribute to this phenomenon have been studied through computational models and animal experiments. However, the optimal stimulation parameters to achieve axonal conduction block are difficult to define, since they depend on the species, the nerve being targeted, as well as the technical and experimental setup. This study proposes an experimental setup along with an original data processing approach for the quantification of the effectiveness of neural conduction block. Experiments were performed on the sciatic nerve of two Sprague-Dawley rats, by evaluating different groups of stimulation parameters with varying amplitudes and frequencies, ranging from 1 to 10 mA and from 2 to 10 kHz, respectively. Results suggest that the effectiveness of axonal conduction block strongly depends on the selection of the stimulation parameters. In this work, more effective blockages were achieved for frequencies around 4 kHz and within an approximate amplitude range of 2 to 8 mA.


Neural Conduction , Sciatic Nerve , Action Potentials , Animals , Electric Stimulation , Electromyography , Nerve Block , Rats , Rats, Sprague-Dawley
11.
Comput Biol Med ; 93: 17-30, 2018 02 01.
Article En | MEDLINE | ID: mdl-29253628

Preterm labor is an important public health problem. However, the efficiency of the uterine muscle during labor is complex and still poorly understood. This work is a first step towards a model of the uterine muscle, including its electrical and mechanical components, to reach a better understanding of the uterus synchronization. This model is proposed to investigate, by simulation, the possible role of mechanotransduction for the global synchronization of the uterus. The electrical diffusion indeed explains the local propagation of contractile activity, while the tissue stretching may play a role in the synchronization of distant parts of the uterine muscle. This work proposes a multi-physics (electrical, mechanical) and multi-scales (cell, tissue, whole uterus) model, which is applied to a realistic uterus 3D mesh. This model includes electrical components at different scales: generation of action potentials at the cell level, electrical diffusion at the tissue level. It then links these electrical events to the mechanical behavior, at the cellular level (via the intracellular calcium concentration), by simulating the force generated by each active cell. It thus computes an estimation of the intra uterine pressure (IUP) by integrating the forces generated by each active cell at the whole uterine level, as well as the stretching of the tissue (by using a viscoelastic law for the behavior of the tissue). It finally includes at the cellular level stretch activated channels (SACs) that permit to create a loop between the mechanical and the electrical behavior (mechanotransduction). The simulation of different activated regions of the uterus, which in this first "proof of concept" case are electrically isolated, permits the activation of inactive regions through the stretching (induced by the electrically active regions) computed at the whole organ scale. This permits us to evidence the role of the mechanotransduction in the global synchronization of the uterus. The results also permit us to evidence the effect on IUP of this enhanced synchronization induced by the presence of SACs. This proposed simplified model will be further improved in order to permit a better understanding of the global uterine synchronization occurring during efficient labor contractions.


Action Potentials , Calcium Signaling , Mechanotransduction, Cellular , Models, Biological , Myometrium/physiopathology , Obstetric Labor, Premature , Female , Humans , Obstetric Labor, Premature/metabolism , Obstetric Labor, Premature/physiopathology , Pregnancy
12.
Annu Int Conf IEEE Eng Med Biol Soc ; 2017: 2948-2951, 2017 Jul.
Article En | MEDLINE | ID: mdl-29060516

Electrohysterogram source imaging, i.e., moving from the electrode/sensor space to the source space using EHG signals, provide an estimate of spatial distributions of uterine activity at millisecond scale. This paper aims to study the ability of different distributed source localization methods to recover uterine electrical activity sources. Performance was quantified using a detection accuracy index. Our result suggests that the variation based method is able to reconstruct extended uterus sources with the overall high accuracy, where the increasing of the electrodes numbers and the decreasing of the fat thickness induce a better accuracy in localization.


Uterus , Electrodes , Female , Humans , Pregnancy , Uterine Contraction , Uterine Monitoring
13.
Comput Biol Med ; 77: 182-94, 2016 10 01.
Article En | MEDLINE | ID: mdl-27567400

Detecting preterm labor as early as possible is important because tocolytic drugs are much more likely to delay preterm delivery if administered early. Having good information on the real risk of premature labor also leads to fewer women who do not need aggressive treatment for premature labor threat. Currently, one of the most promising ways to diagnose preterm labor threat is the analysis of the electrohysterogram (EHG). Its characteristics have been related to preterm labor risk but they have not proven to be sufficiently accurate to use in clinical routine. One of the reasons for this is that the physiology of the pregnant uterus is insufficiently understood. Models already exist in literature that simulate either the electrical or the mechanical component of the uterine smooth muscle. Few include both components in a co-simulation of electrical and mechanical aspects. A model that can represent realistically both the electrical and the mechanical behavior of the uterine muscle could be useful for better understanding the EHG and therefore for preterm labor detection. Processing the EHG considers only the electrical component of the uterus but the electrical activity does not seem to explain by itself the synchronization of the uterine muscle that occurs during labor and not at other times. Recent studies have demonstrated that the mechanical behavior of the uterine muscle seems to play an important role in uterus synchronization during labor. The aim of the proposed study is to link three different models of the uterine smooth muscle behavior by using co-simulation. The models go from the electrical activity generated at the cellular level to the mechanical force generated by the muscle and from there to the deformation of the tissue. The results show the feasibility of combining these three models to model a whole uterus contraction on 3D realistic uterus model.


Electrophysiological Phenomena/physiology , Models, Biological , Uterine Contraction/physiology , Uterine Monitoring/methods , Uterus/physiology , Action Potentials/physiology , Female , Humans , Muscle, Smooth/physiology , Pregnancy
14.
Article En | MEDLINE | ID: mdl-23366698

In this paper, we investigate muscular fatigue. We propose a new fatigue index based on the continuous wavelet transform (CWT) and compare it with the standard fatigue indexes from literature. Fatigue indexes are all based on the electrical activity of muscles (electromyogram) acquired during an electrically stimulated contraction (ES). The stimulator and electromyogram system, which were presented in a previous work, allows real-time analysis. The extracted fatigue parameters are compared between each other and their sensitivity to noise is studied. The effect of truncation of M waves is then investigated, enlightening the robustness of the index obtained using CWT.


Muscle Fatigue/physiology , Electromyography , Humans
...