Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Genome Biol ; 18(1): 22, 2017 01 30.
Artículo en Inglés | MEDLINE | ID: mdl-28137300

RESUMEN

BACKGROUND: Whole-exome sequencing (WES) has been successful in identifying genes that cause familial Parkinson's disease (PD). However, until now this approach has not been deployed to study large cohorts of unrelated participants. To discover rare PD susceptibility variants, we performed WES in 1148 unrelated cases and 503 control participants. Candidate genes were subsequently validated for functions relevant to PD based on parallel RNA-interference (RNAi) screens in human cell culture and Drosophila and C. elegans models. RESULTS: Assuming autosomal recessive inheritance, we identify 27 genes that have homozygous or compound heterozygous loss-of-function variants in PD cases. Definitive replication and confirmation of these findings were hindered by potential heterogeneity and by the rarity of the implicated alleles. We therefore looked for potential genetic interactions with established PD mechanisms. Following RNAi-mediated knockdown, 15 of the genes modulated mitochondrial dynamics in human neuronal cultures and four candidates enhanced α-synuclein-induced neurodegeneration in Drosophila. Based on complementary analyses in independent human datasets, five functionally validated genes-GPATCH2L, UHRF1BP1L, PTPRH, ARSB, and VPS13C-also showed evidence consistent with genetic replication. CONCLUSIONS: By integrating human genetic and functional evidence, we identify several PD susceptibility gene candidates for further investigation. Our approach highlights a powerful experimental strategy with broad applicability for future studies of disorders with complex genetic etiologies.


Asunto(s)
Predisposición Genética a la Enfermedad , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Enfermedad de Parkinson/genética , Análisis de Secuencia de ADN/métodos , alfa-Sinucleína/genética , Adolescente , Adulto , Animales , Animales Modificados Genéticamente , Caenorhabditis elegans/genética , Estudios de Casos y Controles , Células Cultivadas , Niño , Modelos Animales de Enfermedad , Drosophila melanogaster/genética , Exoma , Humanos , Persona de Mediana Edad , Interferencia de ARN , Adulto Joven
2.
Dev Biol ; 404(2): 2-20, 2015 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-25779704

RESUMEN

Glia comprise a conspicuous population of non-neuronal cells in vertebrate and invertebrate nervous systems. Drosophila serves as a favorable model to elucidate basic principles of glial biology in vivo. The Drosophila neuropil glia (NPG), subdivided into astrocyte-like (ALG) and ensheathing glia (EG), extend reticular processes which associate with synapses and sheath-like processes which surround neuropil compartments, respectively. In this paper we characterize the development of NPG throughout fly brain development. We find that differentiated neuropil glia of the larval brain originate as a cluster of precursors derived from embryonic progenitors located in the basal brain. These precursors undergo a characteristic migration to spread over the neuropil surface while specifying/differentiating into primary ALG and EG. Embryonically-derived primary NPG are large cells which are few in number, and occupy relatively stereotyped positions around the larval neuropil surface. During metamorphosis, primary NPG undergo cell death. Neuropil glia of the adult (secondary NPG) are derived from type II lineages during the postembryonic phase of neurogliogenesis. These secondary NPG are much smaller in size but greater in number than primary NPG. Lineage tracing reveals that both NPG subtypes derive from intermediate neural progenitors of multipotent type II lineages. Taken together, this study reveals previously uncharacterized dynamics of NPG development and provides a framework for future studies utilizing Drosophila glia as a model.


Asunto(s)
Encéfalo/embriología , Drosophila/embriología , Células-Madre Neurales/citología , Neurogénesis/fisiología , Neuroglía/citología , Animales , Astrocitos/citología , Encéfalo/citología , Linaje de la Célula , Movimiento Celular , Larva/citología , Larva/crecimiento & desarrollo , Metamorfosis Biológica/fisiología , Neurópilo/citología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA