Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 5 de 5
1.
Nat Med ; 27(4): 688-699, 2021 04.
Article En | MEDLINE | ID: mdl-33820995

Bronchiectasis, a progressive chronic airway disease, is characterized by microbial colonization and infection. We present an approach to the multi-biome that integrates bacterial, viral and fungal communities in bronchiectasis through weighted similarity network fusion ( https://integrative-microbiomics.ntu.edu.sg ). Patients at greatest risk of exacerbation have less complex microbial co-occurrence networks, reduced diversity and a higher degree of antagonistic interactions in their airway microbiome. Furthermore, longitudinal interactome dynamics reveals microbial antagonism during exacerbation, which resolves following treatment in an otherwise stable multi-biome. Assessment of the Pseudomonas interactome shows that interaction networks, rather than abundance alone, are associated with exacerbation risk, and that incorporation of microbial interaction data improves clinical prediction models. Shotgun metagenomic sequencing of an independent cohort validated the multi-biome interactions detected in targeted analysis and confirmed the association with exacerbation. Integrative microbiomics captures microbial interactions to determine exacerbation risk, which cannot be appreciated by the study of a single microbial group. Antibiotic strategies probably target the interaction networks rather than individual microbes, providing a fresh approach to the understanding of respiratory infection.


Bronchiectasis/microbiology , Microbiota , Bronchiectasis/virology , Disease Progression , Humans , Metagenomics , Microbial Interactions/genetics , Microbiota/genetics , Phylogeny
3.
mBio ; 11(5)2020 09 29.
Article En | MEDLINE | ID: mdl-32994320

Estrogen, a major female sex steroid hormone, has been shown to promote the selection of mucoid Pseudomonas aeruginosa in the airways of patients with chronic respiratory diseases, including cystic fibrosis. This results in long-term persistence, poorer clinical outcomes, and limited therapeutic options. In this study, we demonstrate that at physiological concentrations, sex steroids, including testosterone and estriol, induce membrane stress responses in P. aeruginosa This is characterized by increased virulence and consequent inflammation and release of proinflammatory outer membrane vesicles promoting in vivo persistence of the bacteria. The steroid-induced P. aeruginosa response correlates with the molecular polarity of the hormones and membrane fluidic properties of the bacteria. This novel mechanism of interaction between sex steroids and P. aeruginosa explicates the reported increased disease severity observed in females with cystic fibrosis and provides evidence for the therapeutic potential of the modulation of sex steroids to achieve better clinical outcomes in patients with hormone-responsive strains.IMPORTANCE Molecular mechanisms by which sex steroids interact with P. aeruginosa to modulate its virulence have yet to be reported. Our work provides the first characterization of a steroid-induced membrane stress mechanism promoting P. aeruginosa virulence, which includes the release of proinflammatory outer membrane vesicles, resulting in inflammation, host tissue damage, and reduced bacterial clearance. We further demonstrate that at nanomolar (physiological) concentrations, male and female sex steroids promote virulence in clinical strains of P. aeruginosa based on their dynamic membrane fluidic properties. This work provides, for the first-time, mechanistic insight to better understand and predict the P. aeruginosa related response to sex steroids and explain the interindividual patient variability observed in respiratory diseases such as cystic fibrosis that are complicated by gender differences and chronic P. aeruginosa infection.


Bacterial Outer Membrane/drug effects , Cystic Fibrosis/complications , Gonadal Steroid Hormones/metabolism , Pseudomonas aeruginosa/pathogenicity , Stress, Physiological/drug effects , Alginates/metabolism , Animals , Biofilms/drug effects , Biofilms/growth & development , Cystic Fibrosis/microbiology , Estradiol/chemistry , Estradiol/pharmacology , Female , Gonadal Steroid Hormones/pharmacology , Humans , Inflammation , Male , Mice , Mice, Inbred BALB C , Pseudomonas aeruginosa/genetics , Sex Factors , Testosterone/chemistry , Testosterone/pharmacology , Virulence
4.
Respirology ; 22(4): 634-650, 2017 05.
Article En | MEDLINE | ID: mdl-28342288

COPD is a major global concern, increasingly so in the context of ageing populations. The role of infections in disease pathogenesis and progression is known to be important, yet the mechanisms involved remain to be fully elucidated. While COPD pathogens such as Haemophilus influenzae, Moraxella catarrhalis and Streptococcus pneumoniae are strongly associated with acute exacerbations of COPD (AECOPD), the clinical relevance of these pathogens in stable COPD patients remains unclear. Immune responses in stable and colonized COPD patients are comparable to those detected in AECOPD, supporting a role for chronic colonization in COPD pathogenesis through perpetuation of deleterious immune responses. Advances in molecular diagnostics and metagenomics now allow the assessment of microbe-COPD interactions with unprecedented personalization and precision, revealing changes in microbiota associated with the COPD disease state. As microbial changes associated with AECOPD, disease severity and therapeutic intervention become apparent, a renewed focus has been placed on the microbiology of COPD and the characterization of the lung microbiome in both its acute and chronic states. Characterization of bacterial, viral and fungal microbiota as part of the lung microbiome has the potential to reveal previously unrecognized prognostic markers of COPD that predict disease outcome or infection susceptibility. Addressing such knowledge gaps will ultimately lead to a more complete understanding of the microbe-host interplay in COPD. This will permit clearer distinctions between acute and chronic infections and more granular patient stratification that will enable better management of these features and of COPD.


Bacteria/isolation & purification , Bacterial Infections/complications , Pulmonary Disease, Chronic Obstructive , Respiratory System/microbiology , Respiratory Tract Infections/complications , Acute Disease , Bacterial Infections/microbiology , Disease Progression , Humans , Pulmonary Disease, Chronic Obstructive/epidemiology , Pulmonary Disease, Chronic Obstructive/etiology , Pulmonary Disease, Chronic Obstructive/microbiology , Respiratory Tract Infections/microbiology
5.
Expert Rev Respir Med ; 11(4): 285-298, 2017 04.
Article En | MEDLINE | ID: mdl-28282995

INTRODUCTION: Chronic obstructive pulmonary disease accounts for a large burden of lung disease. It can 'overlap' with other respiratory diseases including bronchiectasis, fibrosis and obstructive sleep apnea (OSA). While COPD alone confers morbidity and mortality, common features with contrasting clinical outcomes can occur in COPD 'overlap syndromes'. Areas covered: Given the large degree of heterogeneity in COPD, individual variation to treatment is adopted based on its observed phenotype, which in turn overlaps with features of other respiratory disease states such as asthma. This is coined asthma-COPD overlap syndrome ('ACOS'). Other examples of such overlapping clinical states include bronchiectasis-COPD ('BCOS'), fibrosis-COPD ('FCOS') and OSA-COPD ('OCOS'). The objective of this review is to highlight similarities and differences between the COPD-overlap syndromes in terms of risk factors, pathophysiology, diagnosis and potential treatment differences. Expert commentary: As a consequence of COPD overlap syndromes, a transition from the traditional 'one size fits all' treatment approach is necessary. Greater treatment stratification according to clinical phenotype using a precision medicine approach is now required. In this light, it is important to recognize and differentiate COPD overlap syndromes as distinct disease states compared to individual diseases such as asthma, COPD, fibrosis or bronchiectasis.


Pulmonary Disease, Chronic Obstructive/complications , Pulmonary Disease, Chronic Obstructive/diagnosis , Humans , Pulmonary Disease, Chronic Obstructive/physiopathology , Syndrome
...