Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nanoscale Horiz ; 5(4): 654-662, 2020 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-32226980

RESUMEN

For increasing the restricted bit-density in the conventional binary logic system, extensive research efforts have been directed toward implementing single devices with a two threshold voltage (VTH) characteristic via the single negative differential resistance (NDR) phenomenon. In particular, recent advances in forming van der Waals (vdW) heterostructures with two-dimensional crystals have opened up new possibilities for realizing such NDR-based tunneling devices. However, it has been challenging to exhibit three VTH through the multiple-NDR (m-NDR) phenomenon in a single device even by using vdW heterostructures. Here, we show the m-NDR device formed on a BP/(ReS2 + HfS2) type-III double-heterostructure. This m-NDR device is then integrated with a vdW transistor to demonstrate a ternary vdW latch circuit capable of storing three logic states. Finally, the ternary latch is extended toward ternary SRAM, and its high-speed write and read operations are theoretically verified.

2.
J Nanosci Nanotechnol ; 18(9): 6001-6004, 2018 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-29677732

RESUMEN

We investigated the effect of an electric field-based post exposure bake (EF-PEB) process on photoacid diffusion and pattern formation. To investigate the control of photoacid diffusion experimentally, the EF-PEB processes was performed at various temperatures. Cross sectional images of various EF-PEB processed samples were obtained by scanning electron microscopy (SEM) after ion beam milling. In addition, we conducted a numerical analysis of photoacid distribution and diffusion with following Fick's second law and compared the experimental results with our theoretical model. The drift distance was theoretically predicted by multiplying drift velocity and EF-PEB time, and the experimental values were obtained by finding the difference in pattern depths of PEB/EFPEB samples. Finally, an EF-PEB temperature of 85 °C was confirmed as the optimum condition to maximize photoacid drift distance using the electric field.

3.
Nanoscale ; 8(38): 16995-17003, 2016 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-27714115

RESUMEN

We report the CVD synthesis of a monolayer of MoS2 nanoparticles such that the nanoparticle size was controlled over the range 5-100 nm and the chemical potential of sulfur was modified, both by controlling the hydrogen flow rate during the CVD process. As the hydrogen flow rate was increased, the reaction process of sulfur changed from a "sulfiding" process to a "sulfo-reductive" process, resulting in the growth of smaller MoS2 nanoparticles on the substrates. The size control, crystalline quality, chemical configuration, and distribution uniformity of the CVD-grown monolayer MoS2 nanoparticles were confirmed. The growth of the MoS2 nanoparticles at different edge states was studied using density functional theory calculations to clarify the size-tunable mechanism. A non-volatile memory device fabricated using the CVD-grown size-controlled 5 nm monolayer MoS2 nanoparticles as a floating gate showed a good memory window of 5-8 V and an excellent retention period of a decade.

4.
Sci Rep ; 6: 35733, 2016 10 24.
Artículo en Inglés | MEDLINE | ID: mdl-27775004

RESUMEN

Here, we report a high performance biosensor based on (i) a Cu2+-DNA/MoS2 hybrid structure and (ii) a field effect transistor, which we refer to as a bio-FET, presenting a high sensitivity of 1.7 × 103 A/A. This high sensitivity was achieved by using a DNA nanostructure with copper ions (Cu2+) that induced a positive polarity in the DNA (receptor). This strategy improved the detecting ability for doxorubicin-like molecules (target) that have a negative polarity. Very short distance between the biomolecules and the sensor surface was obtained without using a dielectric layer, contributing to the high sensitivity. We first investigated the effect of doxorubicin on DNA/MoS2 and Cu2+-DNA/MoS2 nanostructures using Raman spectroscopy and Kelvin force probe microscopy. Then, we analyzed the sensing mechanism and performance in DNA/MoS2- and Cu2+-DNA/MoS2-based bio-FETs by electrical measurements (ID-VG at various VD) for various concentrations of doxorubicin. Finally, successful operation of the Cu2+-DNA/MoS2 bio-FET was demonstrated for six cycles (each cycle consisted of four steps: 2 preparation steps, a sensing step, and an erasing step) with different doxorubicin concentrations. The bio-FET showed excellent reusability, which has not been achieved previously in 2D biosensors.

5.
Adv Mater ; 28(35): 7799-806, 2016 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-27352229

RESUMEN

An ultrahigh performance MoS2 photodetector with high photoresponsivity (1.94 × 10(6) A W(-1) ) and detectivity (1.29 × 10(12) Jones) under 520 nm and 4.63 pW laser exposure is demonstrated. This photodetector is based on a methyl-ammonium lead halide perovskite/MoS2 hybrid structure with (3-aminopropyl)triethoxysilane doping. The performance degradation caused by moisture is also minimized down to 20% by adopting a new encapsulation bilayer of octadecyltrichlorosilane/polymethyl methacrylate.

6.
Adv Mater ; 28(24): 4824-31, 2016 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-27106134

RESUMEN

The effects of triphenylphosphine (PPh3 )-based n-doping and hexagonal boron nitride (h-BN) insertion on a tungsten diselenide (WSe2 ) photodetector are systematically studied, and a very high performance WSe2 /h-BN heterostucture-based photodetector is demonstrated with a record photoresponsivity (1.27 × 10(6) A W(-1) ) and temporal photoresponse (rise time: 2.8 ms, decay time: 20.8 ms) under 520 nm wavelength and 5 pW power laser illumination.

7.
Adv Mater ; 28(5): 864-70, 2016 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-26619053

RESUMEN

The effects of graphene n-doping on a metal-graphene contact are studied in combination with 1D edge contacts, presenting a record contact resistance of 23 Ω µm at room temperature (19 Ω µm at 100 K). This contact scheme is applied to a graphene-perovskite hybrid photodetector, significantly improving its performance (0.6 → 1.8 A W(-1) in photoresponsivity and 3.3 × 10(4) → 5.4 × 10(4) Jones in detectivity).

8.
ACS Nano ; 9(3): 2368-76, 2015 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-25692499

RESUMEN

Despite growing interest in doping two-dimensional (2D) transition metal dichalcogenides (TMDs) for future layered semiconductor devices, controllability is currently limited to only heavy doping (degenerate regime). This causes 2D materials to act as metallic layers, and an ion implantation technique with precise doping controllability is not available for these materials (e.g., MoS2, MoSe2, WS2, WSe2, graphene). Since adjustment of the electrical and optical properties of 2D materials is possible within a light (nondegenerate) doping regime, a wide-range doping capability including nondegenerate and degenerate regimes is a critical aspect of the design and fabrication of 2D TMD-based electronic and optoelectronic devices. Here, we demonstrate a wide-range controllable n-doping method on a 2D TMD material (exfoliated trilayer and bulk MoS2) with the assistance of a phosphorus silicate glass (PSG) insulating layer, which has the broadest doping range among the results reported to date (between 3.6 × 10(10) and 8.3 × 10(12) cm(-2)) and is also applicable to other 2D semiconductors. This is achieved through (1) a three-step process consisting of, first, dopant out-diffusion between 700 and 900 °C, second, thermal activation at 500 °C, and, third, optical activation above 5 µW steps and (2) weight percentage adjustment of P atoms in PSG (2 and 5 wt %). We anticipate our widely controllable n-doping method to be a starting point for the successful integration of future layered semiconductor devices.

9.
Nanoscale ; 7(5): 1688-95, 2015 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-25385535

RESUMEN

In spite of the recent heightened interest in molybdenum disulfide (MoS2) as a two-dimensional material with substantial bandgaps and reasonably high carrier mobility, a method for the layer-controlled and large-scale synthesis of high quality MoS2 films has not previously been established. Here, we demonstrate that layer-controlled and large-area CVD MoS2 films can be achieved by treating the surfaces of their bottom SiO2 substrates with the oxygen plasma process. Raman mapping, UV-Vis, and PL mapping are performed to show that mono, bi, and trilayer MoS2 films grown on the plasma treated substrates fully cover the centimeter scale substrates with a uniform thickness. Our TEM images also present the single crystalline nature of the monolayer MoS2 film and the formation of the layer-controlled bi- and tri-layer MoS2 films. Back-gated transistors fabricated on these MoS2 films are found to exhibit the high current on/off ratio of ∼10(6) and high mobility values of 3.6 cm(2) V(-1) s(-1) (monolayer), 8.2 cm(2) V(-1) s(-1) (bilayer), and 15.6 cm(2) V(-1) s(-1) (trilayer). Our results are expected to have a significant impact on further studies of the MoS2 growth mechanism as well as on the scaled layer-controlled production of high quality MoS2 films for a wide range of applications.

10.
Opt Lett ; 39(14): 4204-7, 2014 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-25121687

RESUMEN

In this Letter, we report Ge p-i-n avalanche photodetectors (APD) with low dark current (sub 1 µA below V(R)=5 V), low operating voltage (avalanche breakdown voltage=8-13 V), and high multiplication gain (440-680) by exploiting a point defect healing method (between 600°C and 650°C) and optimizing the doping concentration of the intrinsic region (p-type ~10¹7 cm⁻³). In addition, Raman spectroscopy and electrochemical capacitance voltage analyses were performed to investigate the junction interfaces in more detail. This successful demonstration of Ge p-i-n APD with low dark current, low operating voltage, and high gain is promising for low-power and high-sensitivity Ge PD applications.

11.
Nanoscale ; 6(7): 3830-6, 2014 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-24584834

RESUMEN

Next generation graphene-based electronics essentially need a dielectric layer with several requirements such as high flexibility, high transparency, and low process temperature. Here, we propose and investigate a flexible and transparent poly-4-vinylphenol and poly(melamine-co-formaldehyde) (PVP/PMF) insulating layer to achieve intrinsic graphene and an excellent gate dielectric layer at sub 200 °C. Chemical and electrical effects of PVP/PMF layer on graphene as well as its dielectric property are systematically investigated through various measurements by adjusting the ratio of PVP to PMF and annealing temperature. The optimized PVP/PMF insulating layer not only removes the native -OH functional groups which work as electron-withdrawing agents on graphene (Dirac point close to zero) but also shows an excellent dielectric property (low hysteresis voltage). Finally, a flexible, wearable, and transparent (95.8%) graphene transistor with Dirac point close to zero is demonstrated on polyethylene terephthalate (PET) substrate by exploiting PVP/PMF layer which can be scaled down to 20 nm.


Asunto(s)
Grafito/química , Polímeros/química , Transistores Electrónicos , Fenoles/química , Tereftalatos Polietilenos/química , Temperatura , Triazinas/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...