Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 14(1): 8504, 2024 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-38605094

RESUMEN

This work aims to investigate the clinical feasibility of deep learning-based synthetic CT images for cervix cancer, comparing them to MR for calculating attenuation (MRCAT). Patient cohort with 50 pairs of T2-weighted MR and CT images from cervical cancer patients was split into 40 for training and 10 for testing phases. We conducted deformable image registration and Nyul intensity normalization for MR images to maximize the similarity between MR and CT images as a preprocessing step. The processed images were plugged into a deep learning model, generative adversarial network. To prove clinical feasibility, we assessed the accuracy of synthetic CT images in image similarity using structural similarity (SSIM) and mean-absolute-error (MAE) and dosimetry similarity using gamma passing rate (GPR). Dose calculation was performed on the true and synthetic CT images with a commercial Monte Carlo algorithm. Synthetic CT images generated by deep learning outperformed MRCAT images in image similarity by 1.5% in SSIM, and 18.5 HU in MAE. In dosimetry, the DL-based synthetic CT images achieved 98.71% and 96.39% in the GPR at 1% and 1 mm criterion with 10% and 60% cut-off values of the prescription dose, which were 0.9% and 5.1% greater GPRs over MRCAT images.


Asunto(s)
Aprendizaje Profundo , Neoplasias del Cuello Uterino , Femenino , Humanos , Neoplasias del Cuello Uterino/diagnóstico por imagen , Estudios de Factibilidad , Procesamiento de Imagen Asistido por Computador/métodos , Imagen por Resonancia Magnética/métodos , Tomografía Computarizada por Rayos X/métodos , Planificación de la Radioterapia Asistida por Computador/métodos
2.
Oncol Lett ; 26(4): 422, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37664669

RESUMEN

Locoregional recurrence (LRR) is the predominant pattern of relapse after definitive breast cancer treatment. The present study aimed to develop machine learning (ML)-based radiomics models to predict LRR in patients with breast cancer by using preoperative magnetic resonance imaging (MRI) data. Data from patients with localized breast cancer that underwent preoperative MRI between January 2013 and December 2017 were collected. Propensity score matching (PSM) was performed to adjust for clinical factors between patients with and without LRR. Radiomics features were obtained from T2-weighted with and without fat-suppressed MRI and contrast-enhanced T1-weighted with fat-suppressed MRI. In the present study five ML models were designed, three base models (support vector machine, random forest, and logistic regression) and two ensemble models (voting model and stacking model) composed of the three base models, and the performance of each base model was compared with the stacking model. After PSM, 28 patients with LRR and 86 patients without LRR were included. Of these 114 patients, 80 patients were randomly selected to train the models, and the remaining 34 patients were used to evaluate the performance of the trained models. In total, 5,064 features were obtained from each patient, and 47-51 features were selected by applying variance threshold and least absolute shrinkage and selection operator. The stacking model demonstrated superior performance in area under the receiver operating characteristic curve (AUC), with an AUC of 0.78 compared to a range of 0.61 to 0.70 for the other models. An external validation study to investigate the efficacy of the stacking model of the present study was initiated and is still ongoing (Korean Radiation Oncology Group 2206).

3.
Med Phys ; 50(10): 6409-6420, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36974390

RESUMEN

PURPOSE: Heart toxicity, such as major acute coronary events (ACE), following breast radiation therapy (RT) is of utmost concern. Thus, many studies have been investigating the effect of mean heart dose (MHD) and dose received in heart sub-structures on toxicity. Most studies focused on the dose thresholds in the heart and its sub-structures, while few studies adopted such computational methods as deep neural networks (DNN) and radiomics. This work aims to construct a feature-driven predictive model for ACE after breast RT. METHODS: A recently proposed two-step predictive model that extracts a number of features from a deep auto-segmentation network and processes the selected features for prediction was adopted. This work refined the auto-segmenting network and feature processing algorithms to enhance performance in cardiac toxicity prediction. In the predictive model, the deep convolutional neural network (CNN) extracted features from 3D computed tomography (CT) images and dose distributions in three automatically segmented heart sub-structures, including the left anterior descending artery (LAD), right coronary artery (RCA), and left ventricle (LV). The optimal feature processing workflow for the extracted features was explored to enhance the prediction accuracy. The regions associated with toxicity were visualized using a class activation map (CAM)-based technique. Our proposed model was validated against a conventional DNN (convolutional and fully connected layers) and radiomics with a patient cohort of 84 cases, including 29 and 55 patient cases with and without ACE. Of the entire 84 cases, 12 randomly chosen cases (5 toxicity and 7 non-toxicity cases) were set aside for independent test, and the remaining 72 cases were applied to 4-fold stratified cross-validation. RESULTS: Our predictive model outperformed the conventional DNN by 38% and 10% and radiomics-based predictive models by 9% and 10% in AUC for 4-fold cross-validations and independent test, respectively. The degree of enhancement was greater when incorporating dose information and heart sub-structures into feature extraction. The model whose inputs were CT, dose, and three sub-structures (LV, LAD, and RCA) reached 96% prediction accuracy on average and 0.94 area under the curve (AUC) on average in the cross-validation, and also achieved prediction accuracy of 83% and AUC of 0.83 in the independent test. On 10 correctly predicted cases out of 12 for the independent test, the activation maps implied that for cases of ACE toxicity, the higher intensity was more likely to be observed inside the LV. CONCLUSIONS: The proposed model characterized by modifications in model input with dose distributions and cardiac sub-structures, and serial processing of feature extraction and feature selection techniques can improve the predictive performance in ACE following breast RT.


Asunto(s)
Neoplasias de la Mama , Ventrículos Cardíacos , Corazón , Radioterapia , Humanos , Corazón/diagnóstico por imagen , Corazón/efectos de la radiación , Redes Neurales de la Computación , Dosificación Radioterapéutica , Tomografía Computarizada por Rayos X , Neoplasias de la Mama/radioterapia , Radioterapia/efectos adversos
4.
Sci Rep ; 12(1): 20823, 2022 12 02.
Artículo en Inglés | MEDLINE | ID: mdl-36460784

RESUMEN

This work attempted to construct a new metal artifact reduction (MAR) framework in kilo-voltage (kV) computed tomography (CT) images by combining (1) deep learning and (2) multi-modal imaging, defined as MARTIAN (Metal Artifact Reduction throughout Two-step sequentIAl deep convolutional neural Networks). Most CNNs under supervised learning require artifact-free images to artifact-contaminated images for artifact correction. Mega-voltage (MV) CT is insensitive to metal artifacts, unlike kV CT due to different physical characteristics, which can facilitate the generation of artifact-free synthetic kV CT images throughout the first network (Network 1). The pairs of true kV CT and artifact-free kV CT images after post-processing constructed a subsequent network (Network 2) to conduct the actual MAR process. The proposed framework was implemented by GAN from 90 scans for head-and-neck and brain radiotherapy and validated with 10 independent cases against commercial MAR software. The artifact-free kV CT images following Network 1 and post-processing led to structural similarity (SSIM) of 0.997, and mean-absolute-error (MAE) of 10.2 HU, relative to true kV CT. Network 2 in charge of actual MAR successfully suppressed metal artifacts, relative to commercial MAR, while retaining the detailed imaging information, yielding the SSIM of 0.995 against 0.997 from the commercial MAR.


Asunto(s)
Medio Ambiente Extraterrestre , Marte , Tomografía Computarizada por Rayos X , Redes Neurales de la Computación , Imagen Multimodal
5.
Cancers (Basel) ; 14(18)2022 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-36139692

RESUMEN

Deep convolutional neural network (CNN) helped enhance image quality of cone-beam computed tomography (CBCT) by generating synthetic CT. Most of the previous works, however, trained network by intensity-based loss functions, possibly undermining to promote image feature similarity. The verifications were not sufficient to demonstrate clinical applicability, either. This work investigated the effect of variable loss functions combining feature- and intensity-driven losses in synthetic CT generation, followed by strengthening the verification of generated images in both image similarity and dosimetry accuracy. The proposed strategy highlighted the feature-driven quantification in (1) training the network by perceptual loss, besides L1 and structural similarity (SSIM) losses regarding anatomical similarity, and (2) evaluating image similarity by feature mapping ratio (FMR), besides conventional metrics. In addition, the synthetic CT images were assessed in terms of dose calculating accuracy by a commercial Monte-Carlo algorithm. The network was trained with 50 paired CBCT-CT scans acquired at the same CT simulator and treatment unit to constrain environmental factors any other than loss functions. For 10 independent cases, incorporating perceptual loss into L1 and SSIM losses outperformed the other combinations, which enhanced FMR of image similarity by 10%, and the dose calculating accuracy by 1-2% of gamma passing rate in 1%/1mm criterion.

6.
Cancers (Basel) ; 14(10)2022 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-35626158

RESUMEN

Recently, several efforts have been made to develop the deep learning (DL) algorithms for automatic detection and segmentation of brain metastases (BM). In this study, we developed an advanced DL model to BM detection and segmentation, especially for small-volume BM. From the institutional cancer registry, contrast-enhanced magnetic resonance images of 65 patients and 603 BM were collected to train and evaluate our DL model. Of the 65 patients, 12 patients with 58 BM were assigned to test-set for performance evaluation. Ground-truth for BM was assigned to one radiation oncologist to manually delineate BM and another one to cross-check. Unlike other previous studies, our study dealt with relatively small BM, so the area occupied by the BM in the high-resolution images were small. Our study applied training techniques such as the overlapping patch technique and 2.5-dimensional (2.5D) training to the well-known U-Net architecture to learn better in smaller BM. As a DL architecture, 2D U-Net was utilized by 2.5D training. For better efficacy and accuracy of a two-dimensional U-Net, we applied effective preprocessing include 2.5D overlapping patch technique. The sensitivity and average false positive rate were measured as detection performance, and their values were 97% and 1.25 per patient, respectively. The dice coefficient with dilation and 95% Hausdorff distance were measured as segmentation performance, and their values were 75% and 2.057 mm, respectively. Our DL model can detect and segment BM with small volume with good performance. Our model provides considerable benefit for clinicians with automatic detection and segmentation of BM for stereotactic ablative radiotherapy.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...