Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Microbiol ; 61(8): 729-739, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37665554

RESUMEN

Mycorrhizal fungi are key components of forest ecosystems and play essential roles in host health. The host specificity of mycorrhizal fungi is variable and the mycorrhizal fungi composition for the dominant tree species is largely known but remains unknown for the less common tree species. In this study, we collected soil samples from the roots of six understudied ectomycorrhizal tree species from a preserved natural park in the Republic of Korea over four seasons to investigate the host specificity of mycorrhizal fungi in multiple tree species, considering the abiotic factors. We evaluated the mycorrhizal fungal composition in each tree species using a metabarcoding approach. Our results revealed that each host tree species harbored unique mycorrhizal communities, despite close localization. Most mycorrhizal taxa belonged to ectomycorrhizal fungi, but a small proportion of ericoid mycorrhizal fungi and arbuscular mycorrhizal fungi were also detected. While common mycorrhizal fungi were shared between the plant species at the genus or higher taxonomic level, we found high host specificity at the species/OTU (operational taxonomic unit) level. Moreover, the effects of the seasons and soil properties on the mycorrhizal communities differed by tree species. Our results indicate that mycorrhizal fungi feature host-specificity at lower taxonomic levels.

3.
J Microbiol ; 61(2): 189-197, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36745333

RESUMEN

Indoor fungi obtain carbon sources from natural sources and even recalcitrant biodegradable materials, such as plastics and synthetic dye. Their vigorous activity may have negative consequences, such as structural damage to building materials or the destruction of precious cultural materials. The animal specimen room of the Seoul National University stocked 36,000 animal resources that had been well-maintained for over 80 years. Due to abandonment without the management of temperature and humidity during the rainy summer season, many stuffed animal specimens had been heavily colonized by fungi. To investigate the fungal species responsible for the destruction of the historical specimens, we isolated fungi from the stuffed animal specimens and identified them at the species level based on morphology and molecular analysis of the ß-tubulin (BenA) gene. A total of 365 strains were isolated and identified as 26 species in Aspergillus (10 spp.), Penicillium (14 spp.), and Talaromyces (2 spp.). Penicillium brocae and Aspergillus sydowii were isolated from most sections of the animal specimens and have damaged the feathers and beaks of valuable specimens. Our findings indicate that within a week of mismanagement, it takes only a few fungal species to wipe out the decades of history of animal diversity. The important lesson here is to prevent this catastrophe from occurring again through a continued interest, not to put all previous efforts to waste.


Asunto(s)
Hongos , Penicillium , Animales , Hongos/genética , Temperatura , Seúl
4.
Mycobiology ; 50(4): 219-230, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36158041

RESUMEN

Agaricales species form pileate-stipitate fruiting bodies and play important roles in maintaining the terrestrial ecosystem as decomposers, symbionts, and pathogens. Approximately 23,000 Agaricales species have been known worldwide, and 937 species have been recorded in the Republic of Korea. However, most of them were identified solely based on morphological characteristics that often led to misidentifications. The specimens collected from 2018 to 2020 in the Republic of Korea were identified based on phylogenetic analysis of the internal transcribed spacer (ITS) sequences. Their identities were confirmed by microscopic characteristics. As a result, 14 Agaricales species were discovered for the first time in the Republic of Korea. They belonged to nine genera: Agaricus, Calocybe, Cortinarius, Hygrocybe, Inocybe, Lepista, Leucoagaricus, Marasmius, and Psathyrella. Detailed macroscopic and microscopic descriptions were provided to help distinguish these species. The morphological and molecular data provided in this study will serve as reliable references for the identification of Agaricales species.

5.
Mycorrhiza ; 32(5-6): 439-449, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35861929

RESUMEN

Ectomycorrhizal fungi (EMF) form symbiotic relationship with the roots of host plants. EMF communities are composed of highly diverse species; however, how they are assembled has been a long-standing question. In this study, we investigated from a phylogenetic perspective how EMF communities assemble on Pinus densiflora seedlings at different spatial scales (i.e., seedling scale and root tip scale). P. densiflora seedlings were collected from different habitats (i.e., disturbed areas and mature forests), and their EMF communities were investigated by morphotype sequencing and next-generation sequencing (NGS). To infer assembly mechanisms, phylogenetic relatedness within the community (i.e., phylogenetic structure) was estimated and spatial distribution of EMF root tips was analyzed. The EMF communities on pine seedlings were largely different between the two habitats. Phylogenetically restricted lineages (Amphinema, /suillus-rhizopogon) were abundant in the disturbed areas, whereas species from diverse lineages were abundant in the mature forests (Russula, Sebacina, /tomentella-thelephora, etc.). In the disturbed areas, phylogenetically similar EMF species were aggregated at the seedling scale, suggesting that disturbance acts as a powerful abiotic filter. However, phylogenetically similar species were spatially segregated from each other at the root tip scale, indicating limiting similarity. In the mature forest seedlings, no distinct phylogenetic signals were detected at both seedling and root tip scale. Collectively, our results suggest that limiting similarity may be an important assembly mechanism at the root tip scale and that assembly mechanisms can vary across habitats and spatial scales.


Asunto(s)
Basidiomycota , Micobioma , Micorrizas , Pinus , Bosques , Micorrizas/genética , Filogenia , Pinus/microbiología , Raíces de Plantas/microbiología , Plantones/microbiología
6.
Environ Microbiol Rep ; 13(5): 649-658, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34162018

RESUMEN

Fungi are key components of belowground ecosystems with various ecological roles in forests. Although the changes in the richness and composition of belowground fungi across altitudinal gradients have been widely reported, only a few studies have focused on the microhabitat types along altitudinal gradients. Here, we analysed the effect of altitude on the ectomycorrhizal and non-ectomycorrhizal fungal communities in belowground microhabitats. We collected root and soil samples from 16 Pinus densiflora forests at various altitudes across Korea, and measured the soil properties as potential factors. Fungal communities were analysed by high-throughput sequencing of the internal transcribed spacer 2 (ITS2) region. We found that altitude negatively affected the species richness of root-inhabiting fungi but did not influence that of soil-inhabiting fungi. In addition, the composition of ectomycorrhizal (ECM) fungi was less influenced by altitude than non-ECM fungi. Most of the soil properties did not show a significant relationship with altitude, but the effect of soil properties was different across microhabitat types and ecological roles of fungi. Our results reveal that microhabitat types and altitudinal gradients differently affect the richness and composition of fungal communities associated with P. densiflora, providing a better understanding of plant-associated fungal communities.


Asunto(s)
Micobioma , Micorrizas , Biodiversidad , Ecosistema , Micorrizas/genética , Microbiología del Suelo
7.
Mycobiology ; 49(6): 551-558, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35035247

RESUMEN

The Federated States of Micronesia (FSM) is an island country in the western Pacific and is a known biodiversity hotspot. However, a relatively small number of fungi (236 species) have been reported till July 2021. Since fungi play major ecological roles in ecosystems, we investigated the fungal diversity of FSM from various sources over 2016 and 2017 and constructed a local fungal inventory, which also included the previously reported species. Fruiting bodies were collected from various host trees and fungal strains were isolated from marine and terrestrial environments. A total of 99 species, of which 78 were newly reported in the FSM, were identified at the species level using a combination of molecular and morphological approaches. Many fungal species were specific to the environment, host, or source. Upon construction of the fungal inventory, 314 species were confirmed to reside in the FSM. This inventory will serve as an important basis for monitoring fungal diversity and identifying novel biological resources in FSM.

8.
Front Microbiol ; 11: 572706, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33193174

RESUMEN

Trees in forest ecosystems constantly interact with the soil fungal community, and this interaction plays a key role in nutrient cycling. The diversity of soil fungal communities is affected by both environmental factors and host tree species. We investigated the influence of both of these factors by examining the total fungal communities in the rhizospheric soil of climax tree species that have similar ecological roles (Carpinus cordata, an ectomycorrhizal [ECM] tree, and Fraxinus rhynchophylla, an arbuscular mycorrhizal [AM] tree) in temperate forests with continental climates of Mt. Jeombong, South Korea. Fungal communities were assessed by Illumina-MiSeq sequencing the internal transcribed spacer (ITS) region of environmental DNA, and comparing their environmental factors (season and soil properties). We found that soil fungi of the two forest types differed in terms of community structure and ecological guild composition. The total fungal community composition changed significantly with seasons and soil properties in the F. rhynchophylla forest, but not in the C. cordata forest. However, potassium and carbon were significantly correlated with fungal diversity in both forests, and a positive correlation was found only between symbiotrophs of C. cordata and the carbon to nitrogen (C/N) ratio. Thus, the effects of environmental factors on soil fungal communities depended on the host trees, but some factors were common in both forests. Our results indicate that individual tree species should be considered when anticipating how the fungal communities will respond to environmental change.

9.
Front Microbiol ; 11: 574146, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33101248

RESUMEN

The pine mushroom (Tricholoma matsutake; Agaricales, Tricholomataceae) is an ectomycorrhizal fungus that produces a commercially valuable, edible mushrooms. Attempts to artificially cultivate T. matsutake has so far been unsuccessful. One method used to induce T. matsutake to produce fruiting bodies of in the wild is shiro (mycelial aggregations of T. matsutake) transplantation. In vitro ectomycorrhization of T. matsutake with seedlings of Pinus densiflora has been successful, but field trials showed limited production of fruiting bodies. Few studies have been done to test what happens after transplantation in the wild, whether T. matsutake persists on the pine seedling roots or gets replaced by other fungi. Here, we investigated the composition and the interaction of the root fungal microbiome of P. densiflora seedlings inoculated with T. matsutake over a 3 year period after field transplantation, using high-throughput sequencing. We found a decline of T. matsutake colonization on pine roots and succession of mycorrhizal fungi as P. densiflora seedlings grew. Early on, roots were colonized by fast-growing, saprotrophic Ascomycota, then later replaced by early stage ectomycorrhiza such as Wilcoxina. At the end, more competitive Suillus species dominated the host roots. Most of the major OTUs had negative or neutral correlation with T. matsutake, but several saprotrophic/plant pathogenic/mycoparasitic species in genera Fusarium, Oidiodendron, and Trichoderma had positive correlation with T. matsutake. Four keystone species were identified during succession; two species (Fusarium oxysporum, and F. trincintum) had a positive correlation with T. matsutake, while the other two had a negative correlation (Suillus granulatus, Cylindrocarpon pauciseptatum). These findings have important implications for further studies on the artificial cultivation of T. matsutake.

10.
Mycobiology ; 48(3): 184-194, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-37970566

RESUMEN

Macrofungi play important roles in forest ecology as wood decayers, symbionts, and pathogens of living trees. For the effective forest management, it is imperative to have a comprehensive overview of macrofungi diversity in specific areas. As a part of the National Institute of Biological Resources projects for discovering indigenous fungi in Korea, we collected macrofungi in Gayasan National Park from 2017 to 2018. These specimens were identified based on morphological characteristics and sequence analysis of internal transcribed spacer (ITS) or the nuclear large subunit rRNA (LSU) region. We discovered 17 macrofungi new to Korea: Butyrea japonica, Ceriporia nanlingensis, Coltricia weii, Coltriciella subglobosa, Crepidotus crocophyllus, Cylindrobasidium laeve, Fulvoderma scaurum, Laetiporus cremeiporus, Lentinellus castoreus, Leucogyrophana mollusca, Marasmius insolitus, Nidularia deformis, Phaeophlebiopsis peniophoroides, Phanerochaete angustocystidiata, Phlebiopsis pilatii, Postia coeruleivirens, and Tengioboletus fujianensis. We described their detailed morphological characteristics.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...