Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Antioxidants (Basel) ; 12(9)2023 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-37760070

RESUMEN

The realm of antimicrobial proteins in plants is extensive but remains relatively uncharted. Understanding the mechanisms underlying the action of plant antifungal proteins (AFPs) holds promise for antifungal strategies. This study aimed to bridge this knowledge gap by comprehensively screening Arabidopsis thaliana species to identify novel AFPs. Using MALDI-TOF analysis, we identified a member of the TEOSINTE BRANCHED1/CYCLOIDEA/PROLIFERATING CELL FACTOR1 (TCP) family of transcription factors as a novel AFP, A. thaliana TCP21 (AtTCP21; accession number NP_196450). Bacterially purified recombinant AtTCP21 inhibited the growth of various pathogenic fungal cells. AtTCP21 was more potent than melittin, a well-known AFP, in combating Colletotrichum gloeosporioides. Growth inhibition assays against various fungal pathogens and yeasts confirmed the pH-dependent antimicrobial activity of AtTCP21. Without inducing any membrane alterations, AtTCP21 penetrates the fungal cell wall and membrane, where it instigates a repressive milieu for fungal cell growth by generating intracellular reactive oxygen species and mitochondrial superoxides; resulting in morphological changes and apoptosis. Our findings demonstrate the redox-regulating effects of AtTCP21 and point to its potential as an antimicrobial agent.

2.
Molecules ; 28(11)2023 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-37298765

RESUMEN

Various proteins introduced into living modified organism (LMO) crops function in plant defense mechanisms against target insect pests or herbicides. This study analyzed the antifungal effects of an introduced LMO protein, 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) from Agrobacterium sp. strain CP4 (CP4-EPSPS). Pure recombinant CP4-EPSPS protein, expressed in Escherichia coli, inhibited the growth of human and plant fungal pathogens (Candida albicans, C. tropicalis, C. krusei, Colletotrichum gloeosporioides, Fusarium solani, F. graminearum, and Trichoderma virens), at minimum inhibitory concentrations (MICs) that ranged from 62.5 to 250 µg/mL. It inhibited fungal spore germination as well as cell proliferation on C. gloeosporioides. Rhodamine-labeled CP4-EPSPS accumulated on the fungal cell wall and within intracellular cytosol. In addition, the protein induced uptake of SYTOX Green into cells, but not into intracellular mitochondrial reactive oxygen species (ROS), indicating that its antifungal action was due to inducing the permeability of the fungal cell wall. Its antifungal action showed cell surface damage, as observed from fungal cell morphology. This study provided information on the effects of the LMO protein, EPSPS, on fungal growth.


Asunto(s)
Antifúngicos , Fosfatos , Humanos , Antifúngicos/farmacología , Plantas Modificadas Genéticamente/metabolismo , Fosfatos/farmacología , 3-Fosfoshikimato 1-Carboxiviniltransferasa/metabolismo , Hongos/metabolismo , Proteínas Recombinantes/farmacología , Óxido Nítrico Sintasa
3.
Antibiotics (Basel) ; 11(11)2022 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-36421317

RESUMEN

Although considerable scientific research data is available for sepsis and cytokine storm syndrome, there is a need to develop new treatments or drugs for sepsis management. Antimicrobial peptides (AMPs) possess anti-bacterial and anti-inflammatory activity, neutralizing toxins such as lipopolysaccharides (LPS, endotoxin). Most AMPs have been designed as a substitute for conventional antibiotics, which kill drug-resistant pathogens. The present study aimed to determine the anti-inflammatory potential of 10 designed XIW (X: lysine, arginine, or glutamic acid) α-helical peptides in macrophages and a mouse model in the presence of LPS. Among them, WIKE-14, a peptide with a helix-to-helix structure, having the 12th amino acid substituted with glutamic acid, suppressed pro-inflammatory cytokines in RAW 264.7 macrophages. This reaction was mediated by the inhibition of the binding between LPS and macrophages. In addition, the WIKE-14 peptide exhibited a potent anti-inflammatory activity in mice ears and lungs inflamed using LPS. Thus, our results may provide useful insights for the development of anti-sepsis agents via the sequence and structure information of the WIKE-14 peptide.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...