Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
J Biomed Inform ; 149: 104576, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-38101690

RESUMEN

INTRODUCTION: Machine learning algorithms are expected to work side-by-side with humans in decision-making pipelines. Thus, the ability of classifiers to make reliable decisions is of paramount importance. Deep neural networks (DNNs) represent the state-of-the-art models to address real-world classification. Although the strength of activation in DNNs is often correlated with the network's confidence, in-depth analyses are needed to establish whether they are well calibrated. METHOD: In this paper, we demonstrate the use of DNN-based classification tools to benefit cancer registries by automating information extraction of disease at diagnosis and at surgery from electronic text pathology reports from the US National Cancer Institute (NCI) Surveillance, Epidemiology, and End Results (SEER) population-based cancer registries. In particular, we introduce multiple methods for selective classification to achieve a target level of accuracy on multiple classification tasks while minimizing the rejection amount-that is, the number of electronic pathology reports for which the model's predictions are unreliable. We evaluate the proposed methods by comparing our approach with the current in-house deep learning-based abstaining classifier. RESULTS: Overall, all the proposed selective classification methods effectively allow for achieving the targeted level of accuracy or higher in a trade-off analysis aimed to minimize the rejection rate. On in-distribution validation and holdout test data, with all the proposed methods, we achieve on all tasks the required target level of accuracy with a lower rejection rate than the deep abstaining classifier (DAC). Interpreting the results for the out-of-distribution test data is more complex; nevertheless, in this case as well, the rejection rate from the best among the proposed methods achieving 97% accuracy or higher is lower than the rejection rate based on the DAC. CONCLUSIONS: We show that although both approaches can flag those samples that should be manually reviewed and labeled by human annotators, the newly proposed methods retain a larger fraction and do so without retraining-thus offering a reduced computational cost compared with the in-house deep learning-based abstaining classifier.


Asunto(s)
Aprendizaje Profundo , Humanos , Incertidumbre , Redes Neurales de la Computación , Algoritmos , Aprendizaje Automático
2.
JAMIA Open ; 5(3): ooac075, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36110150

RESUMEN

Objective: We aim to reduce overfitting and model overconfidence by distilling the knowledge of an ensemble of deep learning models into a single model for the classification of cancer pathology reports. Materials and Methods: We consider the text classification problem that involves 5 individual tasks. The baseline model consists of a multitask convolutional neural network (MtCNN), and the implemented ensemble (teacher) consists of 1000 MtCNNs. We performed knowledge transfer by training a single model (student) with soft labels derived through the aggregation of ensemble predictions. We evaluate performance based on accuracy and abstention rates by using softmax thresholding. Results: The student model outperforms the baseline MtCNN in terms of abstention rates and accuracy, thereby allowing the model to be used with a larger volume of documents when deployed. The highest boost was observed for subsite and histology, for which the student model classified an additional 1.81% reports for subsite and 3.33% reports for histology. Discussion: Ensemble predictions provide a useful strategy for quantifying the uncertainty inherent in labeled data and thereby enable the construction of soft labels with estimated probabilities for multiple classes for a given document. Training models with the derived soft labels reduce model confidence in difficult-to-classify documents, thereby leading to a reduction in the number of highly confident wrong predictions. Conclusions: Ensemble model distillation is a simple tool to reduce model overconfidence in problems with extreme class imbalance and noisy datasets. These methods can facilitate the deployment of deep learning models in high-risk domains with low computational resources where minimizing inference time is required.

3.
JAMIA Open ; 5(2): ooac049, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35721398

RESUMEN

Objectives: The International Classification of Childhood Cancer (ICCC) facilitates the effective classification of a heterogeneous group of cancers in the important pediatric population. However, there has been no development of machine learning models for the ICCC classification. We developed deep learning-based information extraction models from cancer pathology reports based on the ICD-O-3 coding standard. In this article, we describe extending the models to perform ICCC classification. Materials and Methods: We developed 2 models, ICD-O-3 classification and ICCC recoding (Model 1) and direct ICCC classification (Model 2), and 4 scenarios subject to the training sample size. We evaluated these models with a corpus consisting of 29 206 reports with age at diagnosis between 0 and 19 from 6 state cancer registries. Results: Our findings suggest that the direct ICCC classification (Model 2) is substantially better than reusing the ICD-O-3 classification model (Model 1). Applying the uncertainty quantification mechanism to assess the confidence of the algorithm in assigning a code demonstrated that the model achieved a micro-F1 score of 0.987 while abstaining (not sufficiently confident to assign a code) on only 14.8% of ambiguous pathology reports. Conclusions: Our experimental results suggest that the machine learning-based automatic information extraction from childhood cancer pathology reports in the ICCC is a reliable means of supplementing human annotators at state cancer registries by reading and abstracting the majority of the childhood cancer pathology reports accurately and reliably.

4.
Cancer Biomark ; 33(2): 185-198, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35213361

RESUMEN

BACKGROUND: With the use of artificial intelligence and machine learning techniques for biomedical informatics, security and privacy concerns over the data and subject identities have also become an important issue and essential research topic. Without intentional safeguards, machine learning models may find patterns and features to improve task performance that are associated with private personal information. OBJECTIVE: The privacy vulnerability of deep learning models for information extraction from medical textural contents needs to be quantified since the models are exposed to private health information and personally identifiable information. The objective of the study is to quantify the privacy vulnerability of the deep learning models for natural language processing and explore a proper way of securing patients' information to mitigate confidentiality breaches. METHODS: The target model is the multitask convolutional neural network for information extraction from cancer pathology reports, where the data for training the model are from multiple state population-based cancer registries. This study proposes the following schemes to collect vocabularies from the cancer pathology reports; (a) words appearing in multiple registries, and (b) words that have higher mutual information. We performed membership inference attacks on the models in high-performance computing environments. RESULTS: The comparison outcomes suggest that the proposed vocabulary selection methods resulted in lower privacy vulnerability while maintaining the same level of clinical task performance.


Asunto(s)
Confidencialidad , Aprendizaje Profundo , Almacenamiento y Recuperación de la Información/métodos , Procesamiento de Lenguaje Natural , Neoplasias/epidemiología , Inteligencia Artificial , Aprendizaje Profundo/normas , Humanos , Neoplasias/patología , Sistema de Registros
5.
IEEE J Biomed Health Inform ; 26(6): 2796-2803, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35020599

RESUMEN

Recent applications ofdeep learning have shown promising results for classifying unstructured text in the healthcare domain. However, the reliability of models in production settings has been hindered by imbalanced data sets in which a small subset of the classes dominate. In the absence of adequate training data, rare classes necessitate additional model constraints for robust performance. Here, we present a strategy for incorporating short sequences of text (i.e. keywords) into training to boost model accuracy on rare classes. In our approach, we assemble a set of keywords, including short phrases, associated with each class. The keywords are then used as additional data during each batch of model training, resulting in a training loss that has contributions from both raw data and keywords. We evaluate our approach on classification of cancer pathology reports, which shows a substantial increase in model performance for rare classes. Furthermore, we analyze the impact of keywords on model output probabilities for bigrams, providing a straightforward method to identify model difficulties for limited training data.


Asunto(s)
Reproducibilidad de los Resultados , Recolección de Datos , Humanos
6.
J Biomed Inform ; 125: 103957, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34823030

RESUMEN

In the last decade, the widespread adoption of electronic health record documentation has created huge opportunities for information mining. Natural language processing (NLP) techniques using machine and deep learning are becoming increasingly widespread for information extraction tasks from unstructured clinical notes. Disparities in performance when deploying machine learning models in the real world have recently received considerable attention. In the clinical NLP domain, the robustness of convolutional neural networks (CNNs) for classifying cancer pathology reports under natural distribution shifts remains understudied. In this research, we aim to quantify and improve the performance of the CNN for text classification on out-of-distribution (OOD) datasets resulting from the natural evolution of clinical text in pathology reports. We identified class imbalance due to different prevalence of cancer types as one of the sources of performance drop and analyzed the impact of previous methods for addressing class imbalance when deploying models in real-world domains. Our results show that our novel class-specialized ensemble technique outperforms other methods for the classification of rare cancer types in terms of macro F1 scores. We also found that traditional ensemble methods perform better in top classes, leading to higher micro F1 scores. Based on our findings, we formulate a series of recommendations for other ML practitioners on how to build robust models with extremely imbalanced datasets in biomedical NLP applications.


Asunto(s)
Procesamiento de Lenguaje Natural , Neoplasias , Registros Electrónicos de Salud , Humanos , Aprendizaje Automático , Redes Neurales de la Computación
7.
BMC Bioinformatics ; 22(1): 113, 2021 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-33750288

RESUMEN

BACKGROUND: Automated text classification has many important applications in the clinical setting; however, obtaining labelled data for training machine learning and deep learning models is often difficult and expensive. Active learning techniques may mitigate this challenge by reducing the amount of labelled data required to effectively train a model. In this study, we analyze the effectiveness of 11 active learning algorithms on classifying subsite and histology from cancer pathology reports using a Convolutional Neural Network as the text classification model. RESULTS: We compare the performance of each active learning strategy using two differently sized datasets and two different classification tasks. Our results show that on all tasks and dataset sizes, all active learning strategies except diversity-sampling strategies outperformed random sampling, i.e., no active learning. On our large dataset (15K initial labelled samples, adding 15K additional labelled samples each iteration of active learning), there was no clear winner between the different active learning strategies. On our small dataset (1K initial labelled samples, adding 1K additional labelled samples each iteration of active learning), marginal and ratio uncertainty sampling performed better than all other active learning techniques. We found that compared to random sampling, active learning strongly helps performance on rare classes by focusing on underrepresented classes. CONCLUSIONS: Active learning can save annotation cost by helping human annotators efficiently and intelligently select which samples to label. Our results show that a dataset constructed using effective active learning techniques requires less than half the amount of labelled data to achieve the same performance as a dataset constructed using random sampling.


Asunto(s)
Aprendizaje Automático , Neoplasias , Algoritmos , Humanos , Neoplasias/genética , Neoplasias/patología , Redes Neurales de la Computación
8.
IEEE J Biomed Health Inform ; 25(9): 3596-3607, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-33635801

RESUMEN

Bidirectional Encoder Representations from Transformers (BERT) and BERT-based approaches are the current state-of-the-art in many natural language processing (NLP) tasks; however, their application to document classification on long clinical texts is limited. In this work, we introduce four methods to scale BERT, which by default can only handle input sequences up to approximately 400 words long, to perform document classification on clinical texts several thousand words long. We compare these methods against two much simpler architectures - a word-level convolutional neural network and a hierarchical self-attention network - and show that BERT often cannot beat these simpler baselines when classifying MIMIC-III discharge summaries and SEER cancer pathology reports. In our analysis, we show that two key components of BERT - pretraining and WordPiece tokenization - may actually be inhibiting BERT's performance on clinical text classification tasks where the input document is several thousand words long and where correctly identifying labels may depend more on identifying a few key words or phrases rather than understanding the contextual meaning of sequences of text.


Asunto(s)
Procesamiento de Lenguaje Natural , Redes Neurales de la Computación , Humanos
9.
IEEE Trans Emerg Top Comput ; 9(3): 1219-1230, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-36117774

RESUMEN

Population cancer registries can benefit from Deep Learning (DL) to automatically extract cancer characteristics from the high volume of unstructured pathology text reports they process annually. The success of DL to tackle this and other real-world problems is proportional to the availability of large labeled datasets for model training. Although collaboration among cancer registries is essential to fully exploit the promise of DL, privacy and confidentiality concerns are main obstacles for data sharing across cancer registries. Moreover, DL for natural language processing (NLP) requires sharing a vocabulary dictionary for the embedding layer which may contain patient identifiers. Thus, even distributing the trained models across cancer registries causes a privacy violation issue. In this paper, we propose DL NLP model distribution via privacy-preserving transfer learning approaches without sharing sensitive data. These approaches are used to distribute a multitask convolutional neural network (MT-CNN) NLP model among cancer registries. The model is trained to extract six key cancer characteristics - tumor site, subsite, laterality, behavior, histology, and grade - from cancer pathology reports. Using 410,064 pathology documents from two cancer registries, we compare our proposed approach to conventional transfer learning without privacy-preserving, single-registry models, and a model trained on centrally hosted data. The results show that transfer learning approaches including data sharing and model distribution outperform significantly the single-registry model. In addition, the best performing privacy-preserving model distribution approach achieves statistically indistinguishable average micro- and macro-F1 scores across all extraction tasks (0.823,0.580) as compared to the centralized model (0.827,0.585).

10.
J Biomed Inform ; 110: 103564, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32919043

RESUMEN

OBJECTIVE: In machine learning, it is evident that the classification of the task performance increases if bootstrap aggregation (bagging) is applied. However, the bagging of deep neural networks takes tremendous amounts of computational resources and training time. The research question that we aimed to answer in this research is whether we could achieve higher task performance scores and accelerate the training by dividing a problem into sub-problems. MATERIALS AND METHODS: The data used in this study consist of free text from electronic cancer pathology reports. We applied bagging and partitioned data training using Multi-Task Convolutional Neural Network (MT-CNN) and Multi-Task Hierarchical Convolutional Attention Network (MT-HCAN) classifiers. We split a big problem into 20 sub-problems, resampled the training cases 2,000 times, and trained the deep learning model for each bootstrap sample and each sub-problem-thus, generating up to 40,000 models. We performed the training of many models concurrently in a high-performance computing environment at Oak Ridge National Laboratory (ORNL). RESULTS: We demonstrated that aggregation of the models improves task performance compared with the single-model approach, which is consistent with other research studies; and we demonstrated that the two proposed partitioned bagging methods achieved higher classification accuracy scores on four tasks. Notably, the improvements were significant for the extraction of cancer histology data, which had more than 500 class labels in the task; these results show that data partition may alleviate the complexity of the task. On the contrary, the methods did not achieve superior scores for the tasks of site and subsite classification. Intrinsically, since data partitioning was based on the primary cancer site, the accuracy depended on the determination of the partitions, which needs further investigation and improvement. CONCLUSION: Results in this research demonstrate that 1. The data partitioning and bagging strategy achieved higher performance scores. 2. We achieved faster training leveraged by the high-performance Summit supercomputer at ORNL.


Asunto(s)
Neoplasias , Redes Neurales de la Computación , Metodologías Computacionales , Humanos , Almacenamiento y Recuperación de la Información , Aprendizaje Automático
11.
J Am Med Inform Assoc ; 27(1): 89-98, 2020 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-31710668

RESUMEN

OBJECTIVE: We implement 2 different multitask learning (MTL) techniques, hard parameter sharing and cross-stitch, to train a word-level convolutional neural network (CNN) specifically designed for automatic extraction of cancer data from unstructured text in pathology reports. We show the importance of learning related information extraction (IE) tasks leveraging shared representations across the tasks to achieve state-of-the-art performance in classification accuracy and computational efficiency. MATERIALS AND METHODS: Multitask CNN (MTCNN) attempts to tackle document information extraction by learning to extract multiple key cancer characteristics simultaneously. We trained our MTCNN to perform 5 information extraction tasks: (1) primary cancer site (65 classes), (2) laterality (4 classes), (3) behavior (3 classes), (4) histological type (63 classes), and (5) histological grade (5 classes). We evaluated the performance on a corpus of 95 231 pathology documents (71 223 unique tumors) obtained from the Louisiana Tumor Registry. We compared the performance of the MTCNN models against single-task CNN models and 2 traditional machine learning approaches, namely support vector machine (SVM) and random forest classifier (RFC). RESULTS: MTCNNs offered superior performance across all 5 tasks in terms of classification accuracy as compared with the other machine learning models. Based on retrospective evaluation, the hard parameter sharing and cross-stitch MTCNN models correctly classified 59.04% and 57.93% of the pathology reports respectively across all 5 tasks. The baseline models achieved 53.68% (CNN), 46.37% (RFC), and 36.75% (SVM). Based on prospective evaluation, the percentages of correctly classified cases across the 5 tasks were 60.11% (hard parameter sharing), 58.13% (cross-stitch), 51.30% (single-task CNN), 42.07% (RFC), and 35.16% (SVM). Moreover, hard parameter sharing MTCNNs outperformed the other models in computational efficiency by using about the same number of trainable parameters as a single-task CNN. CONCLUSIONS: The hard parameter sharing MTCNN offers superior classification accuracy for automated coding support of pathology documents across a wide range of cancers and multiple information extraction tasks while maintaining similar training and inference time as those of a single task-specific model.


Asunto(s)
Almacenamiento y Recuperación de la Información/métodos , Aprendizaje Automático , Procesamiento de Lenguaje Natural , Neoplasias/patología , Redes Neurales de la Computación , Sistema de Registros , Humanos , Neoplasias/clasificación , Máquina de Vectores de Soporte
12.
Artif Intell Med ; 101: 101726, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31813492

RESUMEN

We introduce a deep learning architecture, hierarchical self-attention networks (HiSANs), designed for classifying pathology reports and show how its unique architecture leads to a new state-of-the-art in accuracy, faster training, and clear interpretability. We evaluate performance on a corpus of 374,899 pathology reports obtained from the National Cancer Institute's (NCI) Surveillance, Epidemiology, and End Results (SEER) program. Each pathology report is associated with five clinical classification tasks - site, laterality, behavior, histology, and grade. We compare the performance of the HiSAN against other machine learning and deep learning approaches commonly used on medical text data - Naive Bayes, logistic regression, convolutional neural networks, and hierarchical attention networks (the previous state-of-the-art). We show that HiSANs are superior to other machine learning and deep learning text classifiers in both accuracy and macro F-score across all five classification tasks. Compared to the previous state-of-the-art, hierarchical attention networks, HiSANs not only are an order of magnitude faster to train, but also achieve about 1% better relative accuracy and 5% better relative macro F-score.


Asunto(s)
Neoplasias/patología , Aprendizaje Profundo , Humanos , Procesamiento de Lenguaje Natural , Neoplasias/clasificación , Redes Neurales de la Computación
13.
Artículo en Inglés | MEDLINE | ID: mdl-31319561

RESUMEN

Korea is facing problems, such as inequality within society and an aging population, that places a burden on public health expenditure. The active adoption of policies that promote work-family balance (WFB), such as parental leave and workplace childcare centers, is known to help solve these problems. However, there has, as yet, been little quantitative evidence accumulated to support this notion. This study used the choice experiment methodology on 373 Koreans in their twenties and thirties, to estimate the level of utility derived from work-family balance policies. The results show that willingness to pay for parental leave was found to be valued at 7.81 million Korean won, while it was 4.83 million won for workplace childcare centers. In particular, WFB policies were found to benefit workers of lower socioeconomic status or belonging to disadvantaged groups, such as women, those with low education levels, and those with low incomes. Furthermore, the utility derived from WFB policies was found to be greater among those who desire children compared to those who do not. The results suggest that the proactive introduction of WFB policies will help solve problems such as inequality within society and population aging.


Asunto(s)
Guarderías Infantiles/economía , Permiso Parental/economía , Equilibrio entre Vida Personal y Laboral/economía , Lugar de Trabajo/psicología , Adulto , Algoritmos , Preescolar , Femenino , Humanos , República de Corea , Factores Socioeconómicos , Lugar de Trabajo/economía , Adulto Joven
14.
Artículo en Inglés | MEDLINE | ID: mdl-36081613

RESUMEN

Automated text information extraction from cancer pathology reports is an active area of research to support national cancer surveillance. A well-known challenge is how to develop information extraction tools with robust performance across cancer registries. In this study we investigated whether transfer learning (TL) with a convolutional neural network (CNN) can facilitate cross-registry knowledge sharing. Specifically, we performed a series of experiments to determine whether a CNN trained with single-registry data is capable of transferring knowledge to another registry or whether developing a cross-registry knowledge database produces a more effective and generalizable model. Using data from two cancer registries and primary tumor site and topography as the information extraction task of interest, our study showed that TL results in 6.90% and 17.22% improvement of classification macro F-score over the baseline single-registry models. Detailed analysis illustrated that the observed improvement is evident in the low prevalence classes.

15.
BMC Bioinformatics ; 19(Suppl 18): 488, 2018 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-30577743

RESUMEN

BACKGROUND: Deep Learning (DL) has advanced the state-of-the-art capabilities in bioinformatics applications which has resulted in trends of increasingly sophisticated and computationally demanding models trained by larger and larger data sets. This vastly increased computational demand challenges the feasibility of conducting cutting-edge research. One solution is to distribute the vast computational workload across multiple computing cluster nodes with data parallelism algorithms. In this study, we used a High-Performance Computing environment and implemented the Downpour Stochastic Gradient Descent algorithm for data parallelism to train a Convolutional Neural Network (CNN) for the natural language processing task of information extraction from a massive dataset of cancer pathology reports. We evaluated the scalability improvements using data parallelism training and the Titan supercomputer at Oak Ridge Leadership Computing Facility. To evaluate scalability, we used different numbers of worker nodes and performed a set of experiments comparing the effects of different training batch sizes and optimizer functions. RESULTS: We found that Adadelta would consistently converge at a lower validation loss, though requiring over twice as many training epochs as the fastest converging optimizer, RMSProp. The Adam optimizer consistently achieved a close 2nd place minimum validation loss significantly faster; using a batch size of 16 and 32 allowed the network to converge in only 4.5 training epochs. CONCLUSIONS: We demonstrated that the networked training process is scalable across multiple compute nodes communicating with message passing interface while achieving higher classification accuracy compared to a traditional machine learning algorithm.


Asunto(s)
Metodologías Computacionales , Aprendizaje Profundo/tendencias , Neoplasias/diagnóstico , Comprensión , Humanos , Neoplasias/patología , Redes Neurales de la Computación
16.
J Med Imaging (Bellingham) ; 5(3): 031408, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-29564370

RESUMEN

Prior research has shown that physicians' medical decisions can be influenced by sequential context, particularly in cases where successive stimuli exhibit similar characteristics when analyzing medical images. This type of systematic error is known to psychophysicists as sequential context effect as it indicates that judgments are influenced by features of and decisions about the preceding case in the sequence of examined cases, rather than being based solely on the peculiarities unique to the present case. We determine if radiologists experience some form of context bias, using screening mammography as the use case. To this end, we explore correlations between previous perceptual behavior and diagnostic decisions and current decisions. We hypothesize that a radiologist's visual search pattern and diagnostic decisions in previous cases are predictive of the radiologist's current diagnostic decisions. To test our hypothesis, we tasked 10 radiologists of varied experience to conduct blind reviews of 100 four-view screening mammograms. Eye-tracking data and diagnostic decisions were collected from each radiologist under conditions mimicking clinical practice. Perceptual behavior was quantified using the fractal dimension of gaze scanpath, which was computed using the Minkowski-Bouligand box-counting method. To test the effect of previous behavior and decisions, we conducted a multifactor fixed-effects ANOVA. Further, to examine the predictive value of previous perceptual behavior and decisions, we trained and evaluated a predictive model for radiologists' current diagnostic decisions. ANOVA tests showed that previous visual behavior, characterized by fractal analysis, previous diagnostic decisions, and image characteristics of previous cases are significant predictors of current diagnostic decisions. Additionally, predictive modeling of diagnostic decisions showed an overall improvement in prediction error when the model is trained on additional information about previous perceptual behavior and diagnostic decisions.

17.
IEEE J Biomed Health Inform ; 22(1): 244-251, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-28475069

RESUMEN

Pathology reports are a primary source of information for cancer registries which process high volumes of free-text reports annually. Information extraction and coding is a manual, labor-intensive process. In this study, we investigated deep learning and a convolutional neural network (CNN), for extracting ICD-O-3 topographic codes from a corpus of breast and lung cancer pathology reports. We performed two experiments, using a CNN and a more conventional term frequency vector approach, to assess the effects of class prevalence and inter-class transfer learning. The experiments were based on a set of 942 pathology reports with human expert annotations as the gold standard. CNN performance was compared against a more conventional term frequency vector space approach. We observed that the deep learning models consistently outperformed the conventional approaches in the class prevalence experiment, resulting in micro- and macro-F score increases of up to 0.132 and 0.226, respectively, when class labels were well populated. Specifically, the best performing CNN achieved a micro-F score of 0.722 over 12 ICD-O-3 topography codes. Transfer learning provided a consistent but modest performance boost for the deep learning methods but trends were contingent on the CNN method and cancer site. These encouraging results demonstrate the potential of deep learning for automated abstraction of pathology reports.


Asunto(s)
Inteligencia Artificial , Diagnóstico por Computador/métodos , Registros Electrónicos de Salud , Neoplasias , Humanos , Neoplasias/clasificación , Neoplasias/diagnóstico , Neoplasias/patología , Máquina de Vectores de Soporte
18.
J Am Med Inform Assoc ; 25(3): 321-330, 2018 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-29155996

RESUMEN

OBJECTIVE: We explored how a deep learning (DL) approach based on hierarchical attention networks (HANs) can improve model performance for multiple information extraction tasks from unstructured cancer pathology reports compared to conventional methods that do not sufficiently capture syntactic and semantic contexts from free-text documents. MATERIALS AND METHODS: Data for our analyses were obtained from 942 deidentified pathology reports collected by the National Cancer Institute Surveillance, Epidemiology, and End Results program. The HAN was implemented for 2 information extraction tasks: (1) primary site, matched to 12 International Classification of Diseases for Oncology topography codes (7 breast, 5 lung primary sites), and (2) histological grade classification, matched to G1-G4. Model performance metrics were compared to conventional machine learning (ML) approaches including naive Bayes, logistic regression, support vector machine, random forest, and extreme gradient boosting, and other DL models, including a recurrent neural network (RNN), a recurrent neural network with attention (RNN w/A), and a convolutional neural network. RESULTS: Our results demonstrate that for both information tasks, HAN performed significantly better compared to the conventional ML and DL techniques. In particular, across the 2 tasks, the mean micro and macro F-scores for the HAN with pretraining were (0.852,0.708), compared to naive Bayes (0.518, 0.213), logistic regression (0.682, 0.453), support vector machine (0.634, 0.434), random forest (0.698, 0.508), extreme gradient boosting (0.696, 0.522), RNN (0.505, 0.301), RNN w/A (0.637, 0.471), and convolutional neural network (0.714, 0.460). CONCLUSIONS: HAN-based DL models show promise in information abstraction tasks within unstructured clinical pathology reports.

19.
Med Phys ; 44(3): 832-846, 2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-28079249

RESUMEN

PURPOSE: The objective of this study was to assess the complexity of human visual search activity during mammographic screening using fractal analysis and to investigate its relationship with case and reader characteristics. METHODS: The study was performed for the task of mammographic screening with simultaneous viewing of four coordinated breast views as typically done in clinical practice. Eye-tracking data and diagnostic decisions collected for 100 mammographic cases (25 normal, 25 benign, 50 malignant) from 10 readers (three board certified radiologists and seven Radiology residents), formed the corpus for this study. The fractal dimension of the readers' visual scanning pattern was computed with the Minkowski-Bouligand box-counting method and used as a measure of gaze complexity. Individual factor and group-based interaction ANOVA analysis was performed to study the association between fractal dimension, case pathology, breast density, and reader experience level. The consistency of the observed trends depending on gaze data representation was also examined. RESULTS: Case pathology, breast density, reader experience level, and individual reader differences are all independent predictors of the complexity of visual scanning pattern when screening for breast cancer. No higher order effects were found to be significant. CONCLUSIONS: Fractal characterization of visual search behavior during mammographic screening is dependent on case properties and image reader characteristics.


Asunto(s)
Neoplasias de la Mama/diagnóstico por imagen , Movimientos Oculares , Fractales , Mamografía/métodos , Interpretación de Imagen Radiográfica Asistida por Computador/métodos , Adulto , Anciano , Anciano de 80 o más Años , Análisis de Varianza , Densidad de la Mama , Errores Diagnósticos , Medidas del Movimiento Ocular , Femenino , Humanos , Internado y Residencia , Persona de Mediana Edad , Variaciones Dependientes del Observador , Competencia Profesional , Radiólogos , Percepción Visual
20.
Artículo en Inglés | MEDLINE | ID: mdl-27754498

RESUMEN

Openly available online sources can be very valuable for executing in silico case-control epidemiological studies. Adjustment of confounding factors to isolate the association between an observing factor and disease is essential for such studies. However, such information is not always readily available online. This paper suggests natural language processing methods for extracting socio-demographic information from content openly available online. Feasibility of the suggested method is demonstrated by performing a case-control study focusing on the association between age, gender, and income level and lung cancer risk. The study shows stronger association between older age and lower socioeconomic status and higher lung cancer risk, which is consistent with the findings reported in traditional cancer epidemiology studies.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA