Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Bioorg Med Chem Lett ; 101: 129652, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38346577

RESUMEN

Mixed-lineage protein kinase 3 (MLK3) is implicated in several human cancers and neurodegenerative diseases. A series of 3H-imidazo[4,5-b]pyridine derivatives were designed, synthesized and evaluated as novel MLK3 inhibitors. A homology model of MLK3 was developed and all designed compounds were docked to assess their binding pattern and affinity toward the MLK3 active site. Based on this knowledge, we synthesized and experimentally evaluated the designed compounds. Majority of the compounds showed significant inhibition of MLK3 in the enzymatic assay. In particular, compounds 9a, 9e, 9j, 9 k, 12b and 12d exhibited IC50 values of 6, 6, 8, 11, 14 and 14 nM, respectively. Furthermore, compounds 9a, 9e, 9 k and 12b exhibited favorable physicochemical properties among these compounds.


Asunto(s)
Proteina Quinasa Quinasa Quinasa 11 Activada por Mitógeno , Piridinas , Humanos , Relación Estructura-Actividad , Piridinas/química , Simulación del Acoplamiento Molecular , Inhibidores de Proteínas Quinasas/química
2.
Comput Struct Biotechnol J ; 21: 4683-4696, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37841326

RESUMEN

Fragment-based drug discovery (FBDD) is a well-established and effective method for generating diverse and novel hits in drug design. Kinases are suitable targets for FBDD due to their well-defined structure. Water molecules contribute to structure and function of proteins and also influence the environment within the binding pocket. Water molecules form a variety of hydrogen-bonded cyclic water-ring networks, collectively known as topological water networks (TWNs). Analyzing the TWNs in protein binding sites can provide valuable insights into potential locations and shapes for fragments within the binding site. Here, we introduce TWN-based fragment screening (TWN-FS) method, a novel screening method that suggests fragments through grouped TWN analysis within the protein binding site. We used this method to screen known CDK2, CHK1, IGF1R and ERBB4 inhibitors. Our findings suggest that TWN-FS method has the potential to effectively screen fragments. The TWN-FS method package is available on GitHub at https://github.com/pkj0421/TWN-FS.

3.
3 Biotech ; 12(9): 214, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35959167

RESUMEN

In this study, the whole genome of Monascus ruber KACC 46666 was generated using the PacBio RSII sequencer with high-quality de novo assembly to obtain trustworthy assembly and annotation using genome assemblies with long reads from PacBio single-molecule real-time sequencing. The whole genome of M. ruber has a total length of 25.9 Mb, divided in 13 contigs with 9639 genes. The functions of genes involved in secondary metabolite production were further analyzed. Gene clusters involved in the production of Monascus pigment, monacolin K, and mycotoxin citrinin were identified. Notably, most of the citrinin gene cluster was lost, as confirmed via high-performance liquid chromatography analysis. This genome-level safety evaluation of industrially important Monascus strains will provide valuable information for genome-based microbial engineering of natural food colorants and production of commercially important secondary metabolites such as monacolin K.

4.
Int J Mol Sci ; 23(6)2022 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-35328758

RESUMEN

The intrinsic inductive properties of atoms or functional groups depend on the chemical properties of either electron-withdrawing groups (EWGs) or electron-donating groups (EDGs). This study aimed to evaluate in silico methods to determine whether changes in chemical properties of the compound by single atomic substitution affect the biological activity of target proteins and whether the results depend on the properties of the functional groups. We found an imidazo[4,5-b]pyridine-based PAK4 inhibitor, compound 1, as an initial hit compound with the well-defined binding mode for PAK4. In this study, we used both experimental and in silico methods to investigate the effect of atomic substitution on biological activity to optimize the initial hit compound. In biological assays, in the case of EWG, as the size of the halogen atom became smaller and the electronegativity increased, the biological activity IC50 value ranged from 5150 nM to inactive; in the case of EDG, biological activity was inactive. Furthermore, we analyzed the interactions of PAK4 with compounds, focusing on the hinge region residues, L398 and E399, and gatekeeper residues, M395 and K350, of the PAK4 protein using molecular docking studies and fragment molecular orbital (FMO) methods to determine the differences between the effect of EWG and EDG on the activity of target proteins. These results of the docking score and binding energy did not explain the differences in biological activity. However, the pair-interaction energy obtained from the results of the FMO method indicated that there was a difference in the interaction energy between the EWG and EDG in the hinge region residues, L398 and E399, as well as in M395 and K350. The two groups with different properties exhibited opposite electrostatic energy and charge transfer energy between L398 and E399. Additionally, we investigated the electron distribution of the parts interacting with the hinge region by visualizing the molecular electrostatic potential (MEP) surface of the compounds. In conclusion, we described the properties of functional groups that affect biological activity using an in silico method, FMO.


Asunto(s)
Quinasas p21 Activadas , Simulación del Acoplamiento Molecular , Electricidad Estática , Quinasas p21 Activadas/metabolismo
5.
Int J Mol Sci ; 21(18)2020 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-32957634

RESUMEN

Dual-specificity tyrosine phosphorylation-regulated kinase 1A (DYRK1A) is a protein kinase with diverse functions in cell regulation. Abnormal expression and activity of DYRK1A contribute to numerous human malignancies, Down syndrome, and Alzheimer's disease. Notably, DYRK1A has been proposed as a potential therapeutic target for the treatment of diabetes because of its key role in pancreatic ß-cell proliferation. Consequently, DYRK1A is an attractive drug target for a variety of diseases. Here, we report the identification of several DYRK1A inhibitors using our in-house topological water network-based approach. All inhibitors were further verified by in vitro assay.


Asunto(s)
Glucógeno Sintasa Quinasa 3/antagonistas & inhibidores , Glucógeno Sintasa Quinasa 3/química , Simulación de Dinámica Molecular , Inhibidores de Proteínas Quinasas/química , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Proteínas Serina-Treonina Quinasas/química , Proteínas Tirosina Quinasas/antagonistas & inhibidores , Proteínas Tirosina Quinasas/química , Química Computacional , Humanos , Ligandos , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Tirosina Quinasas/genética , Proteínas Tirosina Quinasas/metabolismo , Bibliotecas de Moléculas Pequeñas , Quinasas DyrK
6.
Molecules ; 24(14)2019 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-31336667

RESUMEN

Water molecules play a key role in protein stability, folding, function and ligand binding. Protein hydration has been studied using free energy perturbation algorithms. However, the study of protein hydration without free energy calculation is also an active field of research. Accordingly, topological water network (TWN) analysis has been carried out instead of free energy calculation in the present work to investigate hydration of proteins. Water networks around 20 amino acids in the aqueous solution were explored through molecular dynamics (MD) simulations. These simulation results were compared with experimental observations. Water molecules from the protein data bank structures showed TWN patterns similar to MD simulations. This work revealed that TWNs are effected by the surrounding environment. TWNs could provide valuable clues about the environment around amino acid residues in the proteins. The findings from this study could be exploited for TWN-based drug discovery and development.


Asunto(s)
Aminoácidos/química , Agua/química , Conformación Molecular , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Estructura Molecular , Reproducibilidad de los Resultados , Relación Estructura-Actividad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...