Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 2 de 2
1.
Bioresour Technol ; 172: 321-327, 2014 Nov.
Article En | MEDLINE | ID: mdl-25277260

Despite significant research efforts over the last few decades, membrane fouling in anaerobic membrane bioreactors (AnMBRs) remains an unsolved problem that increases the overall operational costs and obstructs the industrial applications. Herein, we developed a method for effectively controlling the membrane fouling in a sponge-submerged AnMBRs using an anaerobic rotary disk MBR (ARMBR). The disk rotation led the effective collision between the sponge and membrane surface; thus successfully enhanced the membrane permeability in the ARMBR. The effect of the disk rotational speed and sponge volume fraction on the membrane permeability and the relationship between the water flow direction and membrane permeability were investigated. The long-term feasibility was tested over 100days of synthetic wastewater treatment. As a result, stable and economical performance was observed without membrane replacement and washing. The proposed integrated rotary disk-supporting media appears to be a feasible and even beneficial option in the AnMBR technology.


Bacteria, Anaerobic/physiology , Biofilms/growth & development , Bioreactors/microbiology , Equipment Contamination/prevention & control , Membranes, Artificial , Sewage/microbiology , Ultrafiltration/instrumentation , Equipment Design , Equipment Failure Analysis , Rheology/instrumentation , Rotation
2.
Environ Technol ; 32(7-8): 747-55, 2011.
Article En | MEDLINE | ID: mdl-21879550

The effects of antecedent dry days (ADD) on nitrogen removal efficiency were investigated in soil infiltration systems, with three distinguishable layers: mulch layer (ML), coarse soil layer (CSL) and fine soil layer (FSL). Two sets of lab-scale columns with loamy CSL (C1) and sandy CSL (C2) were dosed with synthetic run-off, carrying chemical oxygen demand of 100 mg L(-1) and total nitrogen of 13 mg L(-1). The intermittent dosing cycle was stepwise adjusted for 5, 10 and 20 days. The influent ammonium and organic nitrogen were adsorbed to the entire depth in C1, while dominantly to the FSL in C2. In both columns, the effluent ammonium concentration increased while the organic nitrogen concentration decreased, as ADD increased from 5 to 20 days. The effluent of C1 always showed nitrate concentration exceeding influent, caused by nitrification, by increasing amounts as ADD increased. However, the wash-out of nitrate in C1 was not distinct in terms of mass since the effluent flow rate was only 25% of the influent. In contrast, efficient reduction (>95%) of nitrate loading was observed in C2 under ADD of 5 and 10 days, because of insignificant nitrification in the CSL and denitrification in the FSL. However, for the ADD of 20 days, a significant nitrate wash-out appeared in C2 as well, possibly because of the re-aeration by the decreasing water content in the FSL. Consequently, the total nitrogen load escaping with the effluent was always smaller in C2, supporting the effectiveness of sandy CSL over loamy FSL for nitrogen removal under various ADDs.


Filtration/methods , Nitrogen/chemistry , Nitrogen/isolation & purification , Soil/chemistry , Water Pollutants, Chemical/chemistry , Water Pollutants, Chemical/isolation & purification , Water Purification/methods , Weather , Absorption
...