Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Mil Med ; 2022 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-35043211

RESUMEN

INTRODUCTION: The purpose of this study was to compare the rotational blunt impact performance of an anthropomorphic test device (ATD: male 50% Hybrid III head and neck) headform donning an Advanced Combat Helmet (ACH) between conditions in which the coefficient of static friction (µs) at the head-to-helmet pad interface varied. MATERIALS AND METHODS: Two ACHs (size large) were used in this study and friction was varied using polytetrafluoroethylene (PTFE), human hair, skullcap, and the native vinyl skin of the ATD. A condition in which hook and loop material adhered the headform to the liner system was also tested, resulting in a total of five conditions: PTFE, Human Hair, Skullcap, Vinyl, and Hook. Blunt impact tests with each helmet in each of the five conditions were conducted on a pneumatic linear impactor at 4.3 m/s. The ATD donning the ACH was impacted in seven locations (Crown, Front, Rear, Left Side, Right Side, Left Nape, and Right Nape). The peak resultant angular acceleration (PAA), velocity (PAV), and the Diffuse Axonal Multi-Axis, General Evaluation (DAMAGE) metric were compared between conditions. RESULTS: No pairwise differences were observed between conditions for PAA. A positive correlation was observed between mean µs and PAA at the Front (τ = 0.28; P = .044) and Rear (τ = 0.31; P = .024) impact locations. The Hook condition had a mean PAV value that was often less than the other conditions (P ≤ .024). A positive correlation was observed between mean µs and PAV at the Front (τ = 0.32; P = .019) and Right Side (τ = 0.57; P < .001) locations. The Hook condition tended to have the lowest DAMAGE value compared to the other conditions (P ≤ .032). A positive correlation was observed between the mean µs and DAMAGE at the Rear (τ = 0.60; P < .001) location. A negative correlation was observed at the Left Side (τ = -0.28; P = .040), Right Side (τ = -0.58; P < .001) and Left Nape (τ = -0.56; P < .001) locations. CONCLUSIONS: The results of this study indicate that at some impact locations kinematic responses can vary as a function of the friction at the head-to-helmet pad interface. However, a reduction in the coupling of the head-helmet pad interface did not consistently reduce head angular kinematics or measures of brain strain across impact locations. Thus, for the ACH during collision-type impacts, impact location as opposed to µs seems to have a greater influence on head kinematics and rotational-based measures of brain strain.

2.
J Electromyogr Kinesiol ; 60: 102585, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34474330

RESUMEN

Compliant foams can be used to mitigate ground reaction forces. However, it is unknown how foam surfaces influence the modulation of leg muscle activity. Thus, the current study aimed to investigate how the neuromuscular system managed changes in expected loading due to various thickness of foam placed on the landing surface during a step down task. The surface electromyographic signal (sEMG) pre-activation duration and the root mean square (RMS) amplitude of tibialis anterior (TA), lateral gastrocnemius (LG), and vastus medialis (VM) of 10 active females were measured as they stepped-down with a single leg onto polyurethane foam slabs of varying thickness (0-50 mm). Pre-activation duration was not affected by the thickness of the foam padding. LG RMS amplitude was less in the foam conditions than the control (no- foam) condition, with the greatest reduction observed for the 50 mm foam condition. In some trials, the muscles remained active throughout the step-down task. In such instances, a sEMG onset time and thus a pre-activation duration could not be determined. All foam conditions significantly increased the odds of continuous muscle activity above that of the no-foam condition. The results indicate that foam surfaces may alter the modulation of muscle activity during step-down tasks.


Asunto(s)
Pierna , Músculo Esquelético , Electromiografía , Femenino , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...