Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 32
2.
Plant Biotechnol (Tokyo) ; 40(3): 229-236, 2023 Sep 25.
Article En | MEDLINE | ID: mdl-38420567

Japanese cultivated gentians are highly valued ornamental flowers in Japan, but the flower shape is mostly limited to the single-flower type, unlike other flowers such as roses and carnations. To overcome this limitation, we used the CRISPR/Cas9 genome editing system to increase double-flowered genetic resources in gentians. Our approach targeted an AGAMOUS (AG) floral homeotic gene (AG1), which is responsible for the natural mutation that causes double flowers in gentians. We designed two targets in exon 1 of AG1 for genome editing and found that 9 of 12 herbicide-resistant shoots had biallelic mutations in the target regions of AG1. These nine lines all produced double flowers, with stamens converted into petaloid organs, similar to the natural mutant. We also analyzed the off-target effects of AG2, which is homologous to AG1, and found that such effects occurred in gentian genome editing but with low frequency. Furthermore, we successfully produced transgene-free genome-edited plants (null segregants) by crossing with wild-type pollen. F1 seedlings were subjected to PCR analysis to determine whether foreign DNA sequences, two partial regions of the CaMV35S promoter and Cas9 gene, were present in the genome. As a result, foreign genes were segregated at a 1 : 1 ratio, indicating successful null segregant production. Using PCR analysis, we confirmed that four representative null segregants did not contain transfer DNA. In summary, our study demonstrates that the CRISPR/Cas9 system can efficiently produce double-flowered gentians, and null segregants can also be obtained. These genome-edited plants are valuable genetic resources for future gentian breeding programs.

3.
Int J Mol Sci ; 23(19)2022 Oct 04.
Article En | MEDLINE | ID: mdl-36233055

Japanese cultivated gentians are perennial plants that flower in early summer to late autumn in Japan, depending on the cultivar. Several flowering-related genes, including GtFT1 and GtTFL1, are known to be involved in regulating flowering time, but many such genes remain unidentified. In this study, we obtained transcriptome profiling data using the Gentiana triflora cultivar 'Maciry', which typically flowers in late July. We conducted deep RNA sequencing analysis using gentian plants grown under natural field conditions for three months before flowering. To investigate diurnal changes, the plants were sampled at 4 h intervals over 24 h. Using these transcriptome data, we determined the expression profiles of leaves based on homology searches against the Flowering-Interactive Database of Arabidopsis. In particular, we focused on transcription factor genes, belonging to the BBX and MADS-box families, and analyzed their developmental and diurnal variation. The expression levels of representative BBX genes were also analyzed under long- and short-day conditions using in-vitro-grown seedlings, and the expression patterns of some BBX genes differed. Clustering analysis revealed that the transcription factor genes were coexpressed with GtFT1. Overall, these expression profiles will facilitate further analysis of the molecular mechanisms underlying the control of flowering time in gentians.


Flowers , Gentiana , Flowers/physiology , Gene Expression Profiling , Gene Expression Regulation, Plant , Gentiana/genetics , Gentiana/physiology , Japan , Photoperiod , Plant Proteins/genetics , Plant Proteins/metabolism , Transcription Factors/metabolism , Transcriptome
4.
Philos Trans R Soc Lond B Biol Sci ; 377(1865): 20210257, 2022 12 05.
Article En | MEDLINE | ID: mdl-36252218

Embryonic development and growth in placental mammals proceeds in utero with the support of exchanges of gases, nutrients and waste products between maternal tissues and offspring. Murine embryos are surrounded by several extraembryonic membranes, parietal and visceral yolk sacs, and amnion in the uterus. Notably, the parietal yolk sac is the most outer membrane, consists of three layers, trophoblasts and parietal endoderm (PaE) cells, and is separated by a thick basal lamina termed Reichert's membrane (RM). RM is composed of extracellular matrix (ECM) initially formed as the basement membrane of the trophectoderm of pre-implanted embryos and followed by the heavy deposition of ECM mainly produced in PaE cells of post-implanted embryos. In addition to the physiological roles of RM, such as gas and nutrient exchange, it also plays a crucial role in cushioning and dispersing intrauterine pressures exerted on embryos for normal egg-cylinder morphogenesis. Mechanistically, such intrauterine pressures generated by uterine smooth muscle contractions appear to be involved in the elongation of the egg-cylinder shape, along with primary axis formation, as an important biomechanical element in utero. This review focuses on our current views of the roles of RM in properly buffering intrauterine mechanical forces for mouse egg-cylinder morphogenesis. This article is part of the theme issue 'Extraembryonic tissues: exploring concepts, definitions and functions across the animal kingdom'.


Placenta , Yolk Sac , Animals , Basement Membrane , Endoderm , Female , Gases , Mammals , Mice , Pregnancy , Waste Products
5.
PLoS One ; 17(8): e0272665, 2022.
Article En | MEDLINE | ID: mdl-35951616

The lacquer tree, Toxicodendron vernicifluum, is a common industrial crop in East Asia. However, T. vernicifluum seeds are extremely difficult to germinate, which poses a major obstacle to establishing seedlings for sap production. In this study, we examined the germination properties of T. vernicifluum seeds in order to establish an inexpensive and effective method to promote seed germination. The seeds are covered with a hard endocarp, which we degrade using conventional sulfuric acid-based methods. Although sulfuric acid was effective in promoting seed germination, the germination rate was less than 5%. In addition to treatment with sulfuric acid, co-treatment with cold temperatures or the phytohormone gibberellic acid increased the germination rate to 22-35%. Seed viability analysis combined with specific gravity-based seed selection revealed that more than half of the seeds housed embryos that were incapable of germination. In additions, specific gravity-based seed selection aided in the selection of seeds capable of germination and improved the germination rate to approximately 47%. Taken together, our results suggest that the low germination rate of T. vernicifluum seeds is due to deep seed dormancy-which is controlled by physical and physiological mechanisms-and low embryo viability. To improve the germination rate of T. vernicifluum seeds, we propose an effective method whereby seeds with good germination capacity are selected based on specific gravity, following which their physiological dormancy is inactivated through cold pretreatment.


Germination , Toxicodendron , Germination/physiology , Lacquer , Plant Dormancy/physiology , Seeds/metabolism , Trees
6.
Int J Mol Sci ; 23(10)2022 May 17.
Article En | MEDLINE | ID: mdl-35628413

The elongation of flower longevity increases the commercial value of ornamental plants, and various genes have been identified as influencing flower senescence. Recently, EPHEMERAL1 (EPH1), encoding a NAC-type transcription factor, was identified in Japanese morning glory as a gene that promotes flower senescence. Here we attempted to identify an EPH1 homolog gene from cultivated Japanese gentians and characterized the same with regard to its flower senescence. Two EPH1-LIKE genes (EPH1La and EPH1Lb), considered as alleles, were isolated from a gentian cultivar (Gentiana scabra × G. triflora). Phylogenetic analyses revealed that EPH1L belongs to the NAM subfamily. The transcript levels of EPH1L increased along with its senescence in the field-grown flowers. Under dark-induced senescence conditions, the gentian-detached flowers showed the peak transcription level of EPH1L earlier than that of SAG12, a senescence marker gene, suggesting the involvement of EPH1L in flower senescence. To reveal the EPH1L function, we produced eph1l-knockout mutant lines using the CRISPR/Cas9 system. When the flower longevity was evaluated using the detached flowers as described above, improved longevity was recorded in all genome-edited lines, with delayed induction of SAG12 transcription. The degradation analysis of genomic DNA matched the elongation of flower longevity, cumulatively indicating the involvement of EPH1L in the regulation of flower senescence in gentians.


Gentiana , Flowers/metabolism , Gentiana/genetics , Phylogeny , Plant Senescence , Transcription Factors/metabolism
7.
Commun Biol ; 5(1): 378, 2022 04 19.
Article En | MEDLINE | ID: mdl-35440748

Previously, we have shown that the translocation of Grainyhead-like 3 (GRHL3) transcription factor from the nucleus to the cytoplasm triggers the switch from canonical Wnt signaling for epidermal differentiation to non-canonical Wnt signaling for epithelial morphogenesis. However, the molecular mechanism that underlies the cytoplasmic localization of GRHL3 protein and that activates non-canonical Wnt signaling is not known. Here, we show that ubiquitin-specific protease 39 (USP39), a deubiquitinating enzyme, is involved in the subcellular localization of GRHL3 as a potential GRHL3-interacting protein and is necessary for epithelial morphogenesis to up-regulate expression of planar cell polarity (PCP) components. Notably, mouse Usp39-deficient embryos display early embryonic lethality due to a failure in primitive streak formation and apico-basal polarity in epiblast cells, resembling those of mutant embryos of the Prickle1 gene, a crucial PCP component. Current findings provide unique insights into how differentiation and morphogenesis are coordinated to construct three-dimensional complex structures via USP39.


Cell Polarity , Transcription Factors , Adaptor Proteins, Signal Transducing/metabolism , Animals , Cell Differentiation , Cell Polarity/physiology , DNA-Binding Proteins/metabolism , LIM Domain Proteins , Mammals , Mice , Morphogenesis , Transcription Factors/metabolism , Up-Regulation
8.
BMC Biol ; 20(1): 64, 2022 03 09.
Article En | MEDLINE | ID: mdl-35264162

BACKGROUND: During mammalian preimplantation development, as the fertilized egg develops and differentiates, three cell lineages become specified: trophectoderm (TE), epiblast, and primitive endoderm (PrE). Through two steps of cell fate decisions, 16-cell blastomeres develop into TE and an inner cell mass (ICM), and thereafter, the latter differentiates into pluripotent epiblast and PrE. Although bromodomain and extra-terminal domain (BET) proteins, such as BRD4, are necessary for the transcriptional activation of genes involved in the maintenance of mouse embryonic stem cells by occupying their enhancers, their roles in the development of mouse preimplantation are unknown. RESULTS: To evaluate the effect of BET protein deficiency on cell lineage formation, we cultured preimplantation embryos in the presence of JQ1, which blocks the binding of BET bromodomains to acetylated-histones. We found BET inhibition blocked the transcriptional activation of genes, such as Nanog, Otx2, and Sox2, important for the formation of the epiblast lineage in blastocysts. Expression studies with lineage-specific markers in morulae and blastocysts revealed BET proteins were essential for the specification and maintenance of the epiblast lineage but were dispensable for the formation of primarily extraembryonic TE and PrE lineages. Additional Ingenuity Pathway Analysis and expression studies with a transcriptionally active form of signal transducer and activator of the transcription 3 (STAT3) suggested BET-dependent activation was partly associated with the STAT3-dependent pathway to maintain the epiblast lineage. To identify BET proteins involved in the formation of the epiblast lineage, we analyzed mutant embryos deficient in Brd4, Brd2, and double mutants. Abolishment of NANOG-positive epiblast cells was only evident in Brd4/Brd2 double-deficient morulae. Thus, the phenotype of JQ1-treated embryos is reproduced not by a Brd4- or Brd2-single deficiency, but only Brd4/Brd2-double deficiency, demonstrating the redundant roles of BRD2 and BRD4 in the specification of the epiblast lineage. CONCLUSIONS: BET proteins are essential to the specification and maintenance of the epiblast lineage by activating lineage-specific core transcription factors during mouse preimplantation development. Among BET proteins, BRD4 plays a central role and BRD2 a complementary role in the specification and maintenance of epiblast lineages. Additionally, BET-dependent maintenance of the epiblast lineage may be partly associated with the STAT3-dependent pathway.


Blastocyst , Gene Expression Regulation, Developmental , Animals , Cell Lineage , Germ Layers/metabolism , Mammals/genetics , Mice , Nuclear Proteins/genetics , Transcription Factors/genetics , Transcription Factors/metabolism
9.
Plant Physiol ; 188(4): 1887-1899, 2022 03 28.
Article En | MEDLINE | ID: mdl-35026009

Perennial plants undergo a dormant period in addition to the growth and flowering phases that are commonly observed in annuals and perennials. Consequently, the regulation of these phase transitions in perennials is believed to be complicated. Previous studies have proposed that orthologs of FLOWERING LOCUS T (FT) regulate not only floral initiation but also dormancy. We, therefore, investigated the involvement of FT orthologs (GtFT1 and GtFT2) during the phase transitions of the herbaceous perennial gentian (Gentiana triflora). Analysis of seasonal fluctuations in the expression of these genes revealed that GtFT1 expression increased prior to budbreak and flowering, whereas GtFT2 expression was induced by chilling temperatures with the highest expression occurring when endodormancy was released. The expression of FT-related transcription factors, reportedly involved in flowering, also fluctuated during each phase transition. These results suggested the involvement of GtFT1 in budbreak and floral induction and GtFT2 in dormancy regulation, implying that the two gentian FT orthologs activated a different set of transcription factors. Gentian ft2 mutants generated by CRISPR/Cas9-mediated genome editing had a lower frequency of budbreak and budbreak delay in overwintering buds caused by an incomplete endodormancy release. Our results highlighted that the gentian orthologs of FRUITFULL (GtFUL) and SHORT VEGETATIVE PHASE-like 1 (GtSVP-L1) act downstream of GtFT2, probably to prevent untimely budbreak during ecodormancy. These results suggest that each gentian FT ortholog regulates a different phase transition by having variable responses to endogenous or environmental cues, leading to their ability to induce the expression of distinct downstream genes.


Gentiana , Flowers/physiology , Gene Expression Regulation, Plant , Gentiana/genetics , Gentiana/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism
10.
Methods Mol Biol ; 2303: 579-593, 2022.
Article En | MEDLINE | ID: mdl-34626408

Cell surface-tethered heparan sulfate glycosaminoglycan chains primarily function in a cell autonomous manner, while extracellular matrix-associated heparan sulfate glycosaminoglycan chains function in a non-cell autonomous manner. In addition, the cleaved forms of cell surface-tethered heparan sulfate chains enzymatically released by proteases and heparanases, called shedding, can contribute to non-cell autonomous mechanisms. The movement of heparan sulfate chains to surrounding cells mediated by transcytosis or filopodia also involves another non-cell autonomous mechanism. To determine cell autonomous or non-cell autonomous roles of heparan sulfate glycosaminoglycan chains during early embryogenesis, direct conclusions can be drawn by analyzing chimeric embryos which are composed of wild-type and heparan sulfate glycosaminoglycan chain-deficient cells. Here, we describe methods of production of these chimeric embryos and analysis of their cellular phenotypes with immunohistochemistry at a single-cell level.


Glycosaminoglycans/chemistry , Animals , Cell Membrane , Embryo, Mammalian , Heparan Sulfate Proteoglycans , Heparitin Sulfate , Mice
11.
Planta ; 255(1): 29, 2021 Dec 29.
Article En | MEDLINE | ID: mdl-34964920

MAIN CONCLUSION: Post-transcriptional gene silencing of the chalcone synthase gene CHS specifically suppresses anthocyanin biosynthesis in corolla lobes and is responsible for the formation of a stripe type bicolor in Japanese gentian. The flower of Japanese gentian is a bell-shaped corolla composed of lobes and plicae, which is painted uniformly blue. However, the gentian cultivar 'Hakuju' shows bicolor phenotype (blue-white stripe corolla), in which anthocyanin accumulation is suppressed only in corolla lobes. Expression analysis indicated that steady-state levels of chalcone synthase (CHS) transcripts were remarkably reduced in corolla lobes compared with plicae during petal pigmentation initiation. However, no significant difference in expression levels of other flavonoid biosynthetic structural and regulatory genes was detected in its lobes and plicae. On feeding naringenin in white lobes, anthocyanin accumulation was recovered. Northern blotting probed with CHS confirmed the abundant accumulation of small RNAs in corolla lobes. Likewise, small RNA-seq analysis indicated that short reads from its lobes were predominantly mapped onto the 2nd exon region of the CHS gene, whereas those from the plicae were scarcely mapped. Subsequent infection with the gentian ovary ringspot virus (GORV), which had an RNA-silencing activity, showed the recovery of partial pigmentation in lobes. Hence, these results strongly suggested that suppressing anthocyanin accumulation in the lobes of bicolored 'Hakuju' was attributed to the specific degradation of CHS mRNA in corolla lobes, which was through post-transcriptional gene silencing (PTGS). Herein, we revealed the molecular mechanism of strip bicolor formation in Japanese gentian, and showed that PTGS of CHS was also responsible for flower color pattern in a floricultural plant other than petunia and dahlia.


Gentiana , Acyltransferases/genetics , Acyltransferases/metabolism , Anthocyanins , Flowers/genetics , Flowers/metabolism , Japan , RNA Interference
12.
Cell Rep ; 31(7): 107637, 2020 05 19.
Article En | MEDLINE | ID: mdl-32433954

Mammalian embryogenesis proceeds in utero with the support of nutrients and gases from maternal tissues. However, the contribution of the mechanical environment provided by the uterus to embryogenesis remains unaddressed. Notably, how intrauterine pressures are produced, accurately adjusted, and exerted on embryos are completely unknown. Here, we find that Reichert's membrane, a specialized basement membrane that wraps around the implanted mouse embryo, plays a crucial role as a shock absorber to protect embryos from intrauterine pressures. Notably, intrauterine pressures are produced by uterine smooth muscle contractions, showing the highest and most frequent periodic peaks just after implantation. Mechanistically, such pressures are adjusted within the sealed space between the embryo and uterus created by Reichert's membrane and are involved in egg-cylinder morphogenesis as an important biomechanical environment in utero. Thus, we propose the buffer space sealed by Reichert's membrane cushions and disperses intrauterine pressures exerted on embryos for egg-cylinder morphogenesis.


Basement Membrane/metabolism , Animals , Female , Mice , Morphogenesis , Pregnancy
13.
J Appl Glycosci (1999) ; 66(1): 47-50, 2019.
Article En | MEDLINE | ID: mdl-34354519

Glycoside hydrolases require carboxyl groups as catalysts for their activity. A retaining xylanase from Streptomyces olivaceoviridis E-86 belonging to glycoside hydrolase family 10 possesses Glu128 and Glu236 that respectively function as acid/base and nucleophile. We previously developed a unique mutant of the retaining xylanase, N127S/E128H, whose deglycosylation is triggered by azide. A crystallographic study reported that the transient formation of a Ser-His catalytic dyad in the reaction cycle possibly reduced the azidolysis reaction. In the present study, we engineered a catalytic dyad with enhanced stability by site-directed mutagenesis and crystallographic study of N127S/E128H. Comparison of the Michaelis complexes of N127S/E128H with pNP-X2 and with xylopentaose showed that Ser127 could form an alternative hydrogen bond with Thr82, which disrupts the formation of the Ser-His catalytic dyad. The introduction of T82A mutation in N127S/E128H produces an enhanced first-order rate constant (6 times that of N127S/E128H). We confirmed the presence of a stable Ser-His hydrogen bond in the Michaelis complex of the triple mutant, which forms the productive tautomer of His128 that acts as an acid catalyst. Because the glycosyl azide is applicable in the bioconjugation of glycans by using click chemistry, the enzyme-assisted production of the glycosyl azide may contribute to the field of glycobiology.

14.
Cell Stem Cell ; 24(1): 79-92.e6, 2019 01 03.
Article En | MEDLINE | ID: mdl-30581080

In many tissues, homeostasis is maintained by physical contact between stem cells and an anatomically defined niche. However, how stem cell homeostasis is achieved in environments where cells are motile and dispersed among their progeny remains unknown. Using murine spermatogenesis as a model, we find that spermatogenic stem cell density is tightly regulated by the supply of fibroblast growth factors (FGFs) from lymphatic endothelial cells. We propose that stem cell homeostasis is achieved through competition for a limited supply of FGFs. We show that the quantitative dependence of stem cell density on FGF dosage, the biased localization of stem cells toward FGF sources, and stem cell dynamics during regeneration following injury can all be predicted and explained within the framework of a minimal theoretical model based on "mitogen competition." We propose that this model provides a generic and robust mechanism to support stem cell homeostasis in open, or facultative, niche environments.


Fibroblast Growth Factor 5/physiology , Glial Cell Line-Derived Neurotrophic Factor Receptors/physiology , Homeostasis , Mitogens/pharmacology , Spermatogenesis , Spermatozoa/cytology , Stem Cells/cytology , Animals , Cell Differentiation , Cell Self Renewal , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Spermatozoa/physiology , Stem Cells/drug effects , Stem Cells/physiology
15.
Nat Commun ; 9(1): 4959, 2018 11 20.
Article En | MEDLINE | ID: mdl-30459462

The original version of this Article contained an error in the labelling of Fig. 4. In panel i, the sixth column was incorrectly labelled as NSC23766 negative, and should have been NSC23766 positive. This has now been corrected in both the PDF and HTML versions of the Article.

16.
Nat Commun ; 9(1): 4059, 2018 10 03.
Article En | MEDLINE | ID: mdl-30283008

Epithelial cell shape change is a pivotal driving force for morphogenesis of complex three-dimensional architecture. However, molecular mechanisms triggering shape changes of epithelial cells in the course of growth and differentiation have not been entirely elucidated. Grhl3 plays a crucial role as a downstream transcription factor of Wnt/ß-catenin in epidermal differentiation. Here, we show Grhl3 induced large, mature epidermal cells, enriched with actomyosin networks, from embryoid bodies in vitro. Such epidermal cells were apparently formed by the simultaneous activation of canonical and non-canonical Wnt signaling pathways. A nuclear transcription factor, GRHL3 is localized in the cytoplasm and cell membrane during epidermal differentiation. Subsequently, such extranuclear GRHL3 is essential for the membrane-associated expression of VANGL2 and CELSR1. Cytoplasmic GRHL3, thereby, allows epidermal cells to acquire mechanical properties for changes in epithelial cell shape. Thus, we propose that cytoplasmic localization of GRHL3 upon epidermal differentiation directly triggers epithelial morphogenesis.


Cell Differentiation , Cell Shape , Cytoplasm/metabolism , DNA-Binding Proteins/metabolism , Epidermis/metabolism , Epithelial Cells/cytology , Epithelial Cells/metabolism , Morphogenesis , Transcription Factors/metabolism , Alleles , Animals , Biomarkers/metabolism , Cell Polarity , Cytoskeleton/metabolism , Embryoid Bodies/metabolism , Epidermal Cells/metabolism , Mice , Mice, Transgenic , Models, Biological , Mutation/genetics , NIH 3T3 Cells , Neurulation , Wnt Signaling Pathway
17.
Biochem J ; 475(7): 1309-1322, 2018 04 16.
Article En | MEDLINE | ID: mdl-29581147

Gentiobiose, a ß-1,6-linked glycosyl-disaccharide, accumulates abundantly in Gentianaceae and is involved in aspects of plant development, such as fruits ripening and release of bud dormancy. However, the mechanisms regulating the amount of gentio-oligosaccharide accumulation in plants remain obscure. The present study aimed to identify an enzyme that modulates gentio-oligosaccharide amount in gentian (Gentiana triflora). A protein responsible for gentiobiose hydrolysis, GtGen3A, was identified by partial purification and its peptide sequence analysis. The enzyme had a molecular mass of ∼67 kDa without a secretory signal peptide sequence. Sequence analysis revealed that GtGen3A could be a ß-glucosidase member belonging to glycoside hydrolase family 3 (GH3). GtGen3A showed a homology to GH3 ß-glucan exohydrolases, ExoI of Hordeum vulgare, and ExgI from Zea mays, which preferentially hydrolyzed ß-1,3- and ß-1,4-linked oligosaccharides. The purified recombinant GtGen3A (rGtGen3A) produced in Escherichia coli showed optimal reaction at pH 6.5 and 20°C. The rGtGen3A liberated glucose from ß-1,2-, ß-1,3-, ß-1,4-, and ß-1,6-linked oligosaccharides, and showed the highest activity toward gentiotriose among the substrates tested. Kinetic analysis also revealed that rGtGen3A preferentially hydrolyzed gentiotriose. Virus-induced gene silencing of Gtgen3A in gentian plantlets resulted in predominant accumulation of gentiotriose rather than gentiobiose. Furthermore, the expression level of Gtgen3A was almost similar to the amount of gentiobiose in field-grown gentians. These findings suggest that the main function of GtGen3A is the hydrolysis of gentiotriose to gentiobiose, and that GtGen3A plays a role in modulating gentiobiose amounts in gentian.


Disaccharides/metabolism , Gentiana/enzymology , Glycosides/metabolism , Oligosaccharides/metabolism , beta-Glucosidase/metabolism , Cloning, Molecular , Gentiana/genetics , Gentiana/growth & development , Hydrolysis , Phylogeny , Substrate Specificity , beta-Glucosidase/genetics
18.
PLoS Genet ; 12(10): e1006380, 2016 Oct.
Article En | MEDLINE | ID: mdl-27741242

Acquisition of cis-regulatory elements is a major driving force of evolution, and there are several examples of developmental enhancers derived from transposable elements (TEs). However, it remains unclear whether one enhancer element could have been produced via cooperation among multiple, yet distinct, TEs during evolution. Here we show that an evolutionarily conserved genomic region named AS3_9 comprises three TEs (AmnSINE1, X6b_DNA and MER117), inserted side-by-side, and functions as a distal enhancer for wnt5a expression during morphogenesis of the mammalian secondary palate. Functional analysis of each TE revealed step-by-step retroposition/transposition and co-option together with acquisition of a binding site for Msx1 for its full enhancer function during mammalian evolution. The present study provides a new perspective suggesting that a huge variety of TEs, in combination, could have accelerated the diversity of cis-regulatory elements involved in morphological evolution.


DNA Transposable Elements/genetics , Enhancer Elements, Genetic/genetics , MSX1 Transcription Factor/genetics , Regulatory Sequences, Nucleic Acid , Wnt-5a Protein/biosynthesis , Animals , Binding Sites , DNA-Binding Proteins/genetics , Evolution, Molecular , Gene Expression Regulation , Humans , MSX1 Transcription Factor/metabolism , Mammals , Mice , Mice, Knockout , Palate/growth & development , Transgenes , Wnt-5a Protein/genetics
19.
EBioMedicine ; 2(6): 513-27, 2015 Jun.
Article En | MEDLINE | ID: mdl-26288816

During primary neurulation, the separation of a single-layered ectodermal sheet into the surface ectoderm (SE) and neural tube specifies SE and neural ectoderm (NE) cell fates. The mechanisms underlying fate specification in conjunction with neural tube closure are poorly understood. Here, by comparing expression profiles between SE and NE lineages, we observed that uncommitted progenitor cells, expressing stem cell markers, are present in the neural plate border/neural fold prior to neural tube closure. Our results also demonstrated that canonical Wnt and its antagonists, DKK1/KREMEN1, progressively specify these progenitors into SE or NE fates in accord with the progress of neural tube closure. Additionally, SE specification of the neural plate border via canonical Wnt signaling is directed by the grainyhead-like 3 (Grhl3) transcription factor. Thus, we propose that the fate specification of uncommitted progenitors in the neural plate border by canonical Wnt signaling and its downstream effector Grhl3 is crucial for neural tube closure. This study implicates that failure in critical genetic factors controlling fate specification of progenitor cells in the neural plate border/neural fold coordinated with neural tube closure may be potential causes of human neural tube defects.


DNA-Binding Proteins/genetics , Neural Crest/embryology , Neural Plate/embryology , Transcription Factors/genetics , Wnt Signaling Pathway/physiology , Animals , Body Patterning/physiology , Cell Differentiation , Ectoderm/embryology , Embryo Culture Techniques , Gene Expression Regulation, Developmental , Intercellular Signaling Peptides and Proteins/metabolism , Membrane Proteins/metabolism , Mice , Mice, Knockout , Molecular Sequence Data , Neural Stem Cells/cytology , Neurulation/physiology , Promoter Regions, Genetic/genetics , SOX9 Transcription Factor/metabolism , Wnt Proteins/metabolism , beta Catenin/genetics
20.
Philos Trans R Soc Lond B Biol Sci ; 369(1657)2014 Dec 05.
Article En | MEDLINE | ID: mdl-25349453

During mouse embryogenesis, diffusible growth factors, i.e. fibroblast growth factors, Wnt, bone morphogenetic protein and Hedgehog family members, emanating from localized areas can travel through the extracellular space and reach their target cells to specify the cell fate and form tissue architectures in coordination. However, the mechanisms by which these growth factors travel great distances to their target cells and control the signalling activity as morphogens remain an enigma. Recent studies in mice and other model animals have revealed that heparan sulfate proteoglycans (HSPGs) located on the cell surface (e.g. syndecans and glypicans) and in the extracellular matrix (ECM; e.g. perlecan and agrin) play crucial roles in the extracellular distribution of growth factors. Principally, the function of HSPGs depends primarily on the fine features and localization of their heparan sulfate glycosaminoglycan chains. Cell-surface-tethered HSPGs retain growth factors as co-receptors and/or endocytosis mediators, and enzymatic release of HSPGs from the cell membrane allows HSPGs to transport or move multiple growth factors. By contrast, ECM-associated HSPGs function as a reservoir or barrier in a context-dependent manner. This review is focused on our current understanding of the extracellular distribution of multiple growth factors controlled by HSPGs in mammalian development.


Embryonic Development/physiology , Extracellular Space/metabolism , Heparan Sulfate Proteoglycans/metabolism , Intercellular Signaling Peptides and Proteins/metabolism , Signal Transduction/physiology , Animals , Biological Transport/physiology , Heparan Sulfate Proteoglycans/biosynthesis , Heparan Sulfate Proteoglycans/chemistry , Mice , Models, Biological
...