Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Arch Oral Biol ; 165: 106013, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38833772

RESUMEN

OBJECTIVE: Saliva serves multiple important functions crucial for maintaining a healthy oral and systemic environment. Among them, the pH buffering effect, which is primarily mediated by bicarbonate ions, helps maintain oral homeostasis by neutralizing acidity from ingested foods. Therefore, higher buffering capacity, reflecting the ability to neutralize oral acidity, may influence taste sensitivity, especially for sour taste since it involves sensing H+ ions. This study aims to explore the relationship between salivary buffering capacity and taste sensitivities to the five basic tastes in healthy adult humans. DESIGN: Eighty seven healthy adult students participated in this study. Resting saliva volume was measured using the spitting method. The liquid colorimetric test was used to assess salivary buffering capacity. The whole-mouth taste testing method was employed to determine the recognition threshold for each tastant (NaCl, sucrose, citric acid, quinine-HCl, monosodium glutamate). RESULTS: Taste recognition thresholds for sour taste as well as sweet, salty, and bitter tastes showed no correlation with salivary buffering capacity. Interestingly, a negative relationship was observed between recognition threshold for umami taste and salivary buffering capacity. Furthermore, a positive correlation between salivary buffering capacity and resting saliva volume was observed. CONCLUSIONS: Salivary buffering capacity primarily influences sensitivity to umami taste, but not sour and other tastes.


Asunto(s)
Saliva , Umbral Gustativo , Humanos , Saliva/química , Saliva/metabolismo , Femenino , Masculino , Adulto , Umbral Gustativo/fisiología , Japón , Tampones (Química) , Concentración de Iones de Hidrógeno , Gusto/fisiología , Voluntarios Sanos , Ácido Cítrico , Adulto Joven , Percepción del Gusto/fisiología , Colorimetría , Pueblos del Este de Asia
2.
Anat Rec (Hoboken) ; 307(8): 2933-2946, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38284507

RESUMEN

Expression of alpha-synuclein (Syn), a presynaptic neuronal protein, was immunohistochemically examined in intact rat submandibular, sublingual, and lingual glands. The submandibular gland contained abundant periductal Syn-immunoreactive (-ir) nerve fibers. Abundant Syn-ir varicosities were present in acini of the sublingual and serous lingual glands. By confocal laser scanning microscopy, Syn-ir nerve fibers around smooth muscle actin (SMA)-ir cells alone were infrequent; however, those around aquaporin-5 (AQP5)-ir cells alone and both SMA- and AQP5-ir cells were abundant in the sublingual and serous lingual glands. SMA-ir cells were occasionally immunoreactive for toll-like receptor 4, a Syn receptor. Syn-ir nerve fibers contained tyrosine hydroxylase (TH) in the submandibular gland and choline acetyltransferase (ChAT) in all examined salivary glands. In the superior cervical (SCG), submandibular, and intralingual ganglia, sympathetic and parasympathetic neurons co-expressed Syn with TH and ChAT, respectively. SCG neurons innervating the submandibular gland contained mostly Syn. In the thoracic spinal cord, 14.7% of ChAT-ir preganglionic sympathetic neurons co-expressed Syn. In the superior salivatory nucleus, preganglionic parasympathetic neurons projecting to the lingual nerve co-expressed Syn and ChAT. The present findings indicate that released Syn acts on myoepithelial cells. Syn in pre- and post-ganglionic neurons may regulate neurotransmitter release and salivary volume and composition.


Asunto(s)
Glándulas Salivales , alfa-Sinucleína , Animales , Ratas , Glándulas Salivales/metabolismo , Glándulas Salivales/inervación , Masculino , alfa-Sinucleína/metabolismo , alfa-Sinucleína/análisis , Colina O-Acetiltransferasa/metabolismo , Acuaporina 5/metabolismo , Acuaporina 5/análisis , Tirosina 3-Monooxigenasa/metabolismo , Glándula Submandibular/metabolismo , Ratas Wistar , Ratas Sprague-Dawley , Inmunohistoquímica
3.
eNeuro ; 10(9)2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37696662

RESUMEN

Drug-induced taste disorders reduce quality of life, but little is known about the molecular mechanisms by which drugs induce taste disturbances. In this study, we investigated the short-term and long-term effects of the antiarrhythmic drug flecainide, which is known to cause taste dysfunction. Analyses of behavioral responses (licking tests) revealed that mice given a single intraperitoneal injection of flecainide exhibited a significant reduction in preference for a sour tastant (HCl) but not for other taste solutions (NaCl, quinine, sucrose, KCl and monopotassium glutamate) when compared with controls. Mice administered a single dose of flecainide also had significantly higher taste nerve responses to HCl but not to other taste solutions. Compared with controls, mice administered flecainide once-daily for 30 d showed a reduced preference for HCl without any changes in the behavioral responses to other taste solutions. The electrophysiological experiments using HEK293T cells transiently expressing otopetrin-1 (Otop1; the mouse sour taste receptor) showed that flecainide did not alter the responses to HCl. Taken together, our results suggest that flecainide specifically enhances the response to HCl in mice during short-term and long-term administration. Although further studies will be needed to elucidate the molecular mechanisms, these findings provide new insights into the pathophysiology of drug-induced taste disorders.


Asunto(s)
Antiarrítmicos , Flecainida , Humanos , Animales , Ratones , Antiarrítmicos/farmacología , Flecainida/farmacología , Células HEK293 , Calidad de Vida , Trastornos del Gusto , Proteínas de la Membrana
4.
Nutrients ; 15(13)2023 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-37447268

RESUMEN

On the tongue, the T1R-independent pathway (comprising glucose transporters, including sodium-glucose cotransporter (SGLT1) and the KATP channel) detects only sugars, whereas the T1R-dependent (T1R2/T1R3) pathway can broadly sense various sweeteners. Cephalic-phase insulin release, a rapid release of insulin induced by sensory signals in the head after food-related stimuli, reportedly depends on the T1R-independent pathway, and the competitive sweet taste modulators leptin and endocannabinoids may function on these two different sweet taste pathways independently, suggesting independent roles of two oral sugar-detecting pathways in food intake. Here, we examined the effect of adrenomedullin (ADM), a multifunctional regulatory peptide, on sugar sensing in mice since it affects the expression of SGLT1 in rat enterocytes. We found that ADM receptor components were expressed in T1R3-positive taste cells. Analyses of chorda tympani (CT) nerve responses revealed that ADM enhanced responses to sugars but not to artificial sweeteners and other tastants. Moreover, ADM increased the apical uptake of a fluorescent D-glucose derivative into taste cells and SGLT1 mRNA expression in taste buds. These results suggest that the T1R-independent sweet taste pathway in mouse taste cells is a peripheral target of ADM, and the specific enhancement of gustatory nerve responses to sugars by ADM may contribute to caloric sensing and food intake.


Asunto(s)
Insulinas , Papilas Gustativas , Ratones , Ratas , Animales , Gusto/fisiología , Azúcares , Adrenomedulina/farmacología , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Glucosa/farmacología , Glucosa/metabolismo , Edulcorantes/farmacología , Edulcorantes/metabolismo , Papilas Gustativas/metabolismo , Carbohidratos/farmacología , Insulinas/farmacología
5.
J Physiol Sci ; 73(1): 16, 2023 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-37525102

RESUMEN

Cephalic-phase insulin release (CPIR) occurs before blood glucose increases after a meal. Although glucose is the most plausible cue to induce CPIR, peripheral sensory systems involved are not fully elucidated. We therefore examined roles of sweet sensing by a T1R3-dependent taste receptor and sugar sensing by oral glucose transporters in the oropharyngeal region in inducing CPIR. Spontaneous oral ingestion of glucose significantly increased plasma insulin 5 min later in wild-type (C57BL/6) and T1R3-knockout mice, but intragastric infusion did not. Oral treatment of glucose transporter inhibitors phlorizin and phloretin significantly reduced CPIR after spontaneous oral ingestion. In addition, a rapid increase in plasma insulin was significantly smaller in WT mice with spontaneous oral ingestion of nonmetabolizable glucose analog than in WT mice with spontaneous oral ingestion of glucose. Taken together, the T1R3-dependent receptor is not required for CPIR, but oral glucose transporters greatly contribute to induction of CPIR by sugars.


Asunto(s)
Insulina , Azúcares , Ratones , Animales , Ratones Endogámicos C57BL , Glucosa , Glucemia , Gusto
6.
Foods ; 12(6)2023 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-36981077

RESUMEN

Fermented milk is consumed worldwide because of its nutritious and healthful qualities. Although it is somewhat sour, causing some to dislike it, few studies have examined taste aspects of its ingredients. Wild-type mice and T1R3-GFP-KO mice lacking sweet/umami receptors were tested with various taste components (sucrose, galactose, lactose, galacto-oligosaccharides, fructo-oligosaccharides, l- and d-lactic acid) using 48 h two-bottle tests and short-term lick tests. d-lactic acid levels were measured after the ingestion of d- or; l-lactic acid or water to evaluate d-lactic acidosis. In wild-type mice, for the sweet ingredients the number of licks increased in a concentration-dependent manner, but avoidance was observed at higher concentrations in 48 h two-bottle tests; the sour ingredients d- and l-lactic acid showed concentration-dependent decreases in preference in both short- and long-term tests. In 48 h two-bottle tests comparing d- and l-lactic acid, wild-type but not T1R3-GFP-KO mice showed higher drinking rates for l-lactic acid. d-lactic acidosis did not occur and thus did not contribute to this preference. These results suggest that intake in short-term lick tests varied by preference for each ingredient, whereas intake variation in long-term lick tests reflects postingestive effects. l-lactic acid may have some palatable taste in addition to sour taste.

7.
Arch Oral Biol ; 146: 105590, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36463789

RESUMEN

OBJECTIVE: This study aimed to determine changes in saliva secretion and subjective taste intensity during a sustained period with continuous gustatory stimulation. DESIGN: Twenty-two healthy adults participated in this study. The selected taste solutions were aspartame, sucralose, and acesulfame potassium, which are nonnutritive sweeteners. The concentrations of sucralose1 and acesulfame potassium were set to show the same sweetness intensity as aspartame. Sucralose2 was twice the concentration of sucralose1. The solution was continuously fed into the oral cavity at a flow rate of 0.04 mL / min through a neck-worn precise infusion system. The salivary flow rate (g/min) after 10 min of intraoral water supply from the device was used as the baseline. Salivary flow rate, subjective taste intensity evaluated by the visual analog scale (VAS), and salivary flow rate relative to the baseline were recorded at 10, 30, 60, and 120 min after the start of the test. RESULTS: In the aspartame, sucralose1, and sucralose2 groups, the salivary flow rate increased significantly from 10 min to 120 min after the start of the test when compared to the rate at baseline (p < 0.05). The relative salivary flow rate increased and the VAS value decreased significantly over time and were affected by the time factor (p < 0.001, p = 0.013, respectively) but not by the sweetener-group factor and the interaction effects. CONCLUSIONS: Continuous gustatory stimulation may maintain increased salivary production for a sustained period.


Asunto(s)
Edulcorantes no Nutritivos , Salivación , Tiazinas , Adulto , Humanos , Aspartame/farmacología , Edulcorantes no Nutritivos/farmacología , Gusto/fisiología , Tiazinas/farmacología
8.
J Neurochem ; 158(2): 233-245, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33319361

RESUMEN

Leptin is known to selectively suppress neural and taste cell responses to sweet compounds. The sweet suppressive effect of leptin is mediated by the leptin receptor Ob-Rb, and the ATP-gated K+ (KATP ) channel expressed in some sweet-sensitive, taste receptor family 1 member 3 (T1R3)-positive taste cells. However, the intracellular transduction pathway connecting Ob-Rb to KATP channel remains unknown. Here we report that phosphoinositide 3-kinase (PI3K) mediates leptin's suppression of sweet responses in T1R3-positive taste cells. In in situ taste cell recording, systemically administrated leptin suppressed taste cell responses to sucrose in T1R3-positive taste cells. Such leptin's suppression of sucrose responses was impaired by co-administration of PI3K inhibitors (wortmannin or LY294002). In contrast, co-administration of signal transducer and activator of transcription 3 inhibitor (Stattic) or Src homology region 2 domain-containing phosphatase-2 inhibitor (SHP099) had no effect on leptin's suppression of sucrose responses, although signal transducer and activator of transcription 3 and Src homology region 2 domain-containing phosphatase-2 were expressed in T1R3-positive taste cells. In peeled tongue epithelium, phosphatidylinositol (3,4,5)-trisphosphate production and phosphorylation of AKT by leptin were immunohistochemically detected in some T1R3-positive taste cells but not in glutamate decarboxylase 67-positive taste cells. Leptin-induced phosphatidylinositol (3,4,5)-trisphosphate production was suppressed by LY294002. Thus, leptin suppresses sweet responses of T1R3-positive taste cells by activation of Ob-Rb-PI3K-KATP channel pathway.


Asunto(s)
Leptina/farmacología , Fosfatidilinositol 3-Quinasas/fisiología , Receptores Acoplados a Proteínas G/efectos de los fármacos , Edulcorantes/farmacología , Papilas Gustativas/efectos de los fármacos , Gusto/efectos de los fármacos , Animales , Femenino , Masculino , Ratones , Ratones Transgénicos , Fosfatidilinositoles/metabolismo , Inhibidores de Proteínas Quinasas/farmacología , Factor de Transcripción STAT3/genética , Transducción de Señal/efectos de los fármacos , Lengua/citología , Lengua/efectos de los fármacos
9.
Auton Neurosci ; 228: 102712, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32721850

RESUMEN

Orexin (OX), which regulates sleep and wakefulness and feeding behaviors has 2 isoforms, orexin-A and -B (OXA and OXB). In this study, the distribution of OXA and OXB was examined in the rat superior salivatory nucleus (SSN) using retrograde tracing and immunohistochemical and methods. OXA- and OXB-immunoreactive (-ir) nerve fibers were seen throughout the SSN. These nerve fibers surrounded SSN neurons retrogradely labeled with Fast blue (FB) from the corda-lingual nerve. FB-positive neurons had pericellular OXA- (47.5%) and OXB-ir (49.0%) nerve fibers. Immunohistochemistry for OX receptors also demonstrated the presence of OX1R and OX2R in FB-positive SSN neurons. The majority of FB-positive SSN neurons contained OX1R- (69.7%) or OX2R-immunoreactivity (57.8%). These neurons had small and medium-sized cell bodies. In addition, half of FB-positive SSN neurons which were immunoreactive for OX1R (47.0%) and OX2R (52.2%) had pericellular OXA- and OXB-ir nerve fibers, respectively. Co-expression of OX1R- and OX2R was common in FB-positive SSN neurons. The present study suggests a possibility that OXs regulate the activity of SSN neurons through OX receptors.


Asunto(s)
Fibras Autónomas Preganglionares/metabolismo , Nervio Facial/metabolismo , Receptores de Orexina/metabolismo , Orexinas/metabolismo , Glándula Sublingual/inervación , Glándula Submandibular/inervación , Animales , Inmunohistoquímica , Masculino , Ratas , Ratas Wistar
10.
Acta Physiol (Oxf) ; 230(4): e13529, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32599649

RESUMEN

AIM: We investigated potential neuron types that code sugar information and how sodium-glucose cotransporters (SGLTs) and T1Rs are involved. METHODS: Whole-nerve recordings in the chorda tympani (CT) and the glossopharyngeal (GL) nerves and single-fibre recordings in the CT were performed in T1R3-KO and wild-type (WT) mice. Behavioural response measurements were conducted in T1R3-KO mice using phlorizin (Phl), a competitive inhibitor of SGLTs. RESULTS: Results indicated that significant enhancement occurred in responses to sucrose and glucose (Glc) by adding 10 mmol/L NaCl but not in responses to KCl, monopotassium glutamate, citric acid, quinine sulphate, SC45647(SC) or polycose in both CT and GL nerves. These enhancements were abolished by lingual application of Phl. In single-fibre recording, fibres showing maximal response to sucrose could be classified according to responses to SC and Glc with or without 10 mmol/L NaCl in the CT of WT mice, namely, Phl-insensitive type, Phl-sensitive Glc-type and Mixed (Glc and SC responding)-type fibres. In T1R3-KO mice, Phl-insensitive-type fibres disappeared. Results from behavioural experiments showed that the number of licks and amount of intake for Glc with or without 10 mmol/L NaCl were significantly suppressed by Phl. CONCLUSION: We found evidence for the contribution of SGLTs in sugar sensing in taste cells of mouse tongue. Moreover, we found T1R-dependent (Phl-insensitive) type, Glc-type and Mixed (SGLTs and T1Rs)-type fibres. SGLT1 may be involved in the latter two types and may play important roles in the glucose-specific cephalic phase of digestion and palatable food intake.


Asunto(s)
Azúcares , Gusto , Animales , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Receptores Acoplados a Proteínas G/metabolismo , Transportador 1 de Sodio-Glucosa , Lengua
11.
Int J Mol Sci ; 21(12)2020 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-32580304

RESUMEN

(1) Background: Our previous studies revealed that orexin-A, an appetite-increasing peptide, suppressed reflex swallowing via the commissural part of the nucleus tractus solitarius (cNTS), and that glucagon-like peptide-1 (GLP-1), an appetite-reducing peptide, also suppressed reflex swallowing via the medial nucleus of the NTS (mNTS). In this study, we examined the mutual interaction between orexin-A and GLP-1 in reflex swallowing. (2) Methods: Sprague-Dawley rats under urethane-chloralose anesthesia were used. Swallowing was induced by electrical stimulation of the superior laryngeal nerve (SLN) and was identified by the electromyographic (EMG) signals obtained from the mylohyoid muscle. (3) Results: The injection of GLP-1 (20 pmol) into the mNTS reduced the swallowing frequency and extended the latency of the first swallow. These suppressive effects of GLP-1 were not observed after the fourth ventricular administration of orexin-A. After the injection of an orexin-1 receptor antagonist (SB334867) into the cNTS, an ineffective dose of GLP-1 (6 pmol) into the mNTS suppressed reflex swallowing. Similarly, the suppressive effects of orexin-A (1 nmol) were not observed after the injection of GLP-1 (6 pmol) into the mNTS. After the administration of a GLP-1 receptor antagonist (exendin-4(5-39)), an ineffective dose of orexin-A (0.3 nmol) suppressed reflex swallowing. (4) Conclusions: The presence of reciprocal inhibitory connections between GLP-1 receptive neurons and orexin-A receptive neurons in the NTS was strongly suggested.


Asunto(s)
Deglución/fisiología , Interacciones Farmacológicas , Estimulación Eléctrica , Péptido 1 Similar al Glucagón/farmacología , Nervios Laríngeos/fisiología , Orexinas/farmacología , Reflejo/fisiología , Animales , Deglución/efectos de los fármacos , Masculino , Ratas , Ratas Sprague-Dawley , Reflejo/efectos de los fármacos
12.
Neurosci Lett ; 730: 135041, 2020 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-32413538

RESUMEN

Bitter taste receptors TAS2Rs detect noxious compounds in the oral cavity. Recent heterologous expression studies reported that some compounds function as antagonists for human TAS2Rs. For examples, amino acid derivatives such as γ-aminobutyric acid (GABA) and Nα,Nα-bis(carboxymethyl)-L-Lysine (BCML) blocked responses to quinine mediated by human TAS2R4. Probenecid inhibited responses to phenylthiocarbamide mediated by human TAS2R38. In this study, we investigated the effects of these human bitter receptor antagonists on behavioral lick responses of mice to elucidate whether these compounds also function as bitter taste blockers. In short-term (10 s) lick tests, concentration-dependent lick responses to bitter compounds (quinine-HCl, denatonium and phenylthiourea) were not affected by the addition of GABA or BCML. Probenecid reduced aversive lick responses to denatonium and phenylthiourea but not to quinine-HCl. In addition, taste cell responses to phenylthiourea were inhibited by probenecid. These results suggest some bitter antagonists of human TAS2Rs can work for bitter sense of mouse.


Asunto(s)
Conducta Animal/efectos de los fármacos , Probenecid/farmacología , Receptores Acoplados a Proteínas G/metabolismo , Ácido gamma-Aminobutírico/farmacología , Aminoácidos/farmacología , Animales , Ratones , Quinina/farmacología , Gusto/efectos de los fármacos
13.
PLoS One ; 14(11): e0225190, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31714935

RESUMEN

Expression of insulin and its receptor (IR) in rodent taste cells has been proposed, but exactly which types of taste cells express IR and the function of insulin signaling in taste organ have yet to be determined. In this study, we analyzed expression of IR mRNA and protein in mouse taste bud cells in vivo and explored its function ex vivo in organoids, using RT-PCR, immunohistochemistry, and quantitative PCR. In mouse taste tissue, IR was expressed broadly in taste buds, including in type II and III taste cells. With using 3-D taste bud organoids, we found insulin in the culture medium significantly decreased the number of taste cell and mRNA expression levels of many taste cell genes, including nucleoside triphosphate diphosphohydrolase-2 (NTPDase2), Tas1R3 (T1R3), gustducin, carbonic anhydrase 4 (CA4), glucose transporter-8 (GLUT8), and sodium-glucose cotransporter-1 (SGLT1) in a concentration-dependent manner. Rapamycin, an inhibitor of mechanistic target of rapamycin (mTOR) signaling, diminished insulin's effects and increase taste cell generation. Altogether, circulating insulin might be an important regulator of taste cell growth and/or proliferation via activation of the mTOR pathway.


Asunto(s)
Insulina/metabolismo , Transducción de Señal , Papilas Gustativas/metabolismo , Animales , Biomarcadores , Proliferación Celular , Femenino , Inmunohistoquímica , Masculino , Ratones , Receptor de Insulina/metabolismo , Serina-Treonina Quinasas TOR/metabolismo
14.
Nutrients ; 11(9)2019 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-31546789

RESUMEN

The systemic renin-angiotensin system (RAS) is an important regulator of body fluid and sodium homeostasis. Angiotensin II (AngII) is a key active product of the RAS. We previously revealed that circulating AngII suppresses amiloride-sensitive salt taste responses and enhances the responses to sweet compounds via the AngII type 1 receptor (AT1) expressed in taste cells. However, the molecular mechanisms underlying the modulation of taste function by AngII remain uncharacterized. Here we examined the expression of three RAS components, namely renin, angiotensinogen, and angiotensin-converting enzyme-1 (ACE1), in mouse taste tissues. We found that all three RAS components were present in the taste buds of fungiform and circumvallate papillae and co-expressed with αENaC (epithelial sodium channel α-subunit, a salt taste receptor) or T1R3 (taste receptor type 1 member 3, a sweet taste receptor component). Water-deprived mice exhibited significantly increased levels of renin expression in taste cells (p < 0.05). These results indicate the existence of a local RAS in the taste organ and suggest that taste function may be regulated by both locally-produced and circulating AngII. Such integrated modulation of peripheral taste sensitivity by AngII may play an important role in sodium/calorie homeostasis.


Asunto(s)
Regulación de la Expresión Génica/fisiología , Glutamato Descarboxilasa/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Sistema Renina-Angiotensina/fisiología , Gusto/fisiología , Angiotensinógeno/genética , Angiotensinógeno/metabolismo , Animales , Canales Epiteliales de Sodio/genética , Canales Epiteliales de Sodio/metabolismo , Femenino , Glutamato Descarboxilasa/genética , Proteínas Fluorescentes Verdes , Masculino , Ratones , Receptores Acoplados a Proteínas G/genética , Renina/genética , Renina/metabolismo , Papilas Gustativas/química
15.
Chem Senses ; 44(4): 237-247, 2019 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-30788507

RESUMEN

The gustatory system encodes information about chemical identity, nutritional value, and concentration of sensory stimuli before transmitting the signal from taste buds to central neurons that process and transform the signal. Deciphering the coding logic for taste quality requires examining responses at each level along the neural axis-from peripheral sensory organs to gustatory cortex. From the earliest single-fiber recordings, it was clear that some afferent neurons respond uniquely and others to stimuli of multiple qualities. There is frequently a "best stimulus" for a given neuron, leading to the suggestion that taste exhibits "labeled line coding." In the extreme, a strict "labeled line" requires neurons and pathways dedicated to single qualities (e.g., sweet, bitter, etc.). At the other end of the spectrum, "across-fiber," "combinatorial," or "ensemble" coding requires minimal specific information to be imparted by a single neuron. Instead, taste quality information is encoded by simultaneous activity in ensembles of afferent fibers. Further, "temporal coding" models have proposed that certain features of taste quality may be embedded in the cadence of impulse activity. Taste receptor proteins are often expressed in nonoverlapping sets of cells in taste buds apparently supporting "labeled lines." Yet, taste buds include both narrowly and broadly tuned cells. As gustatory signals proceed to the hindbrain and on to higher centers, coding becomes more distributed and temporal patterns of activity become important. Here, we present the conundrum of taste coding in the light of current electrophysiological and imaging techniques at several levels of the gustatory processing pathway.


Asunto(s)
Neuronas/fisiología , Reconocimiento en Psicología/fisiología , Papilas Gustativas/fisiología , Gusto/fisiología , Animales , Humanos , Estimulación Química
16.
Neuroscience ; 369: 29-39, 2018 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-29113930

RESUMEN

Bitter taste serves as an important signal for potentially poisonous compounds in foods to avoid their ingestion. Thousands of compounds are estimated to taste bitter and presumed to activate taste receptor cells expressing bitter taste receptors (Tas2rs) and coupled transduction components including gustducin, phospholipase Cß2 (PLCß2) and transient receptor potential channel M5 (TRPM5). Indeed, some gustducin-positive taste cells have been shown to respond to bitter compounds. However, there has been no systematic characterization of their response properties to multiple bitter compounds and the role of transduction molecules in these cells. In this study, we investigated bitter taste responses of gustducin-positive taste cells in situ in mouse fungiform (anterior tongue) and circumvallate (posterior tongue) papillae using transgenic mice expressing green fluorescent protein in gustducin-positive cells. The overall response profile of gustducin-positive taste cells to multiple bitter compounds (quinine, denatonium, cyclohexamide, caffeine, sucrose octaacetate, tetraethylammonium, phenylthiourea, L-phenylalanine, MgSO4, and high concentration of saccharin) was not significantly different between fungiform and circumvallate papillae. These bitter-sensitive taste cells were classified into several groups according to their responsiveness to multiple bitter compounds. Bitter responses of gustducin-positive taste cells were significantly suppressed by inhibitors of TRPM5 or PLCß2. In contrast, several bitter inhibitors did not show any effect on bitter responses of taste cells. These results indicate that bitter-sensitive taste cells display heterogeneous responses and that TRPM5 and PLCß2 are indispensable for eliciting bitter taste responses of gustducin-positive taste cells.


Asunto(s)
Papilas Gustativas/fisiología , Gusto/fisiología , Transducina/metabolismo , Animales , Femenino , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Masculino , Potenciales de la Membrana/efectos de los fármacos , Ratones Transgénicos , Fosfolipasa C beta/genética , Fosfolipasa C beta/metabolismo , Fármacos del Sistema Sensorial/farmacología , Canales Catiónicos TRPM/efectos de los fármacos , Canales Catiónicos TRPM/metabolismo , Gusto/efectos de los fármacos , Papilas Gustativas/efectos de los fármacos
17.
Front Physiol ; 8: 866, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29163209

RESUMEN

Cholecystokinin (CCK) is a gut hormone released from enteroendocrine cells. CCK functions as an anorexigenic factor by acting on CCK receptors expressed on the vagal afferent nerve and hypothalamus with a synergistic interaction between leptin. In the gut, tastants such as amino acids and bitter compounds stimulate CCK release from enteroendocrine cells via activation of taste transduction pathways. CCK is also expressed in taste buds, suggesting potential roles of CCK in taste signaling in the peripheral taste organ. In the present study, we focused on the function of CCK in the initial responses to taste stimulation. CCK was coexpressed with type II taste cell markers such as Gα-gustducin, phospholipase Cß2, and transient receptor potential channel M5. Furthermore, a small subset (~30%) of CCK-expressing taste cells expressed a sweet/umami taste receptor component, taste receptor type 1 member 3, in taste buds. Because type II taste cells are sweet, umami or bitter taste cells, the majority of CCK-expressing taste cells may be bitter taste cells. CCK-A and -B receptors were expressed in both taste cells and gustatory neurons. CCK receptor knockout mice showed reduced neural responses to bitter compounds compared with wild-type mice. Consistently, intravenous injection of CCK-Ar antagonist lorglumide selectively suppressed gustatory nerve responses to bitter compounds. Intravenous injection of CCK-8 transiently increased gustatory nerve activities in a dose-dependent manner whereas administration of CCK-8 did not affect activities of bitter-sensitive taste cells. Collectively, CCK may be a functionally important neurotransmitter or neuromodulator to activate bitter nerve fibers in peripheral taste tissues.

18.
Neuroscience ; 332: 76-87, 2016 09 22.
Artículo en Inglés | MEDLINE | ID: mdl-27353597

RESUMEN

Leptin is an important hormone that regulates food intake and energy homeostasis by acting on central and peripheral targets. In the gustatory system, leptin is known to selectively suppress sweet responses by inhibiting the activation of sweet sensitive taste cells. Sweet taste receptor (T1R2+T1R3) is also expressed in gut enteroendocrine cells and contributes to nutrient sensing, hormone release and glucose absorption. Because of the similarities in expression patterns between enteroendocrine and taste receptor cells, we hypothesized that they may also share similar mechanisms used to modify/regulate the sweet responsiveness of these cells by leptin. Here, we used mouse enteroendocrine cell line STC-1 and examined potential effect of leptin on Ca(2+) responses of STC-1 cells to various taste compounds. Ca(2+) responses to sweet compounds in STC-1 cells were suppressed by a rodent T1R3 inhibitor gurmarin, suggesting the involvement of T1R3-dependent receptors in detection of sweet compounds. Responses to sweet substances were suppressed by ⩾1ng/ml leptin without affecting responses to bitter, umami and salty compounds. This effect was inhibited by a leptin antagonist (mutant L39A/D40A/F41A) and by ATP gated K(+) (KATP) channel closer glibenclamide, suggesting that leptin affects sweet taste responses of enteroendocrine cells via activation of leptin receptor and KATP channel expressed in these cells. Moreover, leptin selectively inhibited sweet-induced but not bitter-induced glucagon-like peptide-1 (GLP-1) secretion from STC-1 cells. These results suggest that leptin modulates sweet taste responses of enteroendocrine cells to regulate nutrient sensing, hormone release and glucose absorption in the gut.


Asunto(s)
Células Enteroendocrinas/metabolismo , Leptina/metabolismo , Gusto/fisiología , Animales , Calcio/metabolismo , Línea Celular , Células Enteroendocrinas/efectos de los fármacos , Péptido 1 Similar al Glucagón/metabolismo , Gliburida/farmacología , Inmunohistoquímica , Canales KATP/antagonistas & inhibidores , Canales KATP/metabolismo , Leptina/administración & dosificación , Leptina/antagonistas & inhibidores , Ratones , Reacción en Cadena de la Polimerasa , Bloqueadores de los Canales de Potasio/farmacología , Receptores Acoplados a Proteínas G/metabolismo , Receptores de Leptina/metabolismo , Gusto/efectos de los fármacos , Imagen de Colorante Sensible al Voltaje
19.
Sci Rep ; 6: 22807, 2016 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-26960429

RESUMEN

Acidification of the glycoprotein, miraculin (MCL), induces sweet taste in humans, but not in mice. The sweet taste induced by MCL is more intense when acidification occurs with weak acids as opposed to strong acids. MCL interacts with the human sweet receptor subunit hTAS1R2, but the mechanisms by which the acidification of MCL activates the sweet taste receptor remain largely unexplored. The work reported here speaks directly to this activation by utilizing a sweet receptor TAS1R2 + TAS1R3 assay. In accordance with previous data, MCL-applied cells displayed a pH dependence with citric acid (weak acid) being right shifted to that with hydrochloric acid (strong acid). When histidine residues in both the intracellular and extracellular region of hTAS1R2 were exchanged for alanine, taste-modifying effect of MCL was reduced or abolished. Stronger intracellular acidification of HEK293 cells was induced by citric acid than by HCl and taste-modifying effect of MCL was proportional to intracellular pH regardless of types of acids. These results suggest that intracellular acidity is required for full activation of the sweet taste receptor by MCL.


Asunto(s)
Glicoproteínas/farmacología , Receptores Acoplados a Proteínas G/metabolismo , Proteínas Recombinantes de Fusión/metabolismo , Gusto , Animales , Ácido Cítrico , Células HEK293 , Humanos , Ácido Clorhídrico , Concentración de Iones de Hidrógeno , Ratones , Receptores Acoplados a Proteínas G/genética , Proteínas Recombinantes de Fusión/genética , Edulcorantes
20.
Biochem J ; 473(5): 525-36, 2016 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-26912569

RESUMEN

The taste system of animals is used to detect valuable nutrients and harmful compounds in foods. In humans and mice, sweet, bitter, salty, sour and umami tastes are considered the five basic taste qualities. Sweet and umami tastes are mediated by G-protein-coupled receptors, belonging to the T1R (taste receptor type 1) family. This family consists of three members (T1R1, T1R2 and T1R3). They function as sweet or umami taste receptors by forming heterodimeric complexes, T1R1+T1R3 (umami) or T1R2+T1R3 (sweet). Receptors for each of the basic tastes are thought to be expressed exclusively in taste bud cells. Sweet (T1R2+T1R3-expressing) taste cells were thought to be segregated from umami (T1R1+T1R3-expressing) taste cells in taste buds. However, recent studies have revealed that a significant portion of taste cells in mice expressed all T1R subunits and responded to both sweet and umami compounds. This suggests that sweet and umami taste cells may not be segregated. Mice are able to discriminate between sweet and umami tastes, and both tastes contribute to behavioural preferences for sweet or umami compounds. There is growing evidence that T1R3 is also involved in behavioural avoidance of calcium tastes in mice, which implies that there may be a further population of T1R-expressing taste cells that mediate aversion to calcium taste. Therefore the simple view of detection and segregation of sweet and umami tastes by T1R-expressing taste cells, in mice, is now open to re-examination.


Asunto(s)
Receptores Acoplados a Proteínas G/metabolismo , Papilas Gustativas/metabolismo , Percepción del Gusto , Gusto , Secuencia de Aminoácidos , Animales , Calcio/metabolismo , Ratones , Datos de Secuencia Molecular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...