Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 51
1.
Physiol Rep ; 12(5): e15969, 2024 Mar.
Article En | MEDLINE | ID: mdl-38453353

Fast-twitch muscles are less susceptible to disuse atrophy, activate the mechanistic target of rapamycin complex 1 (mTORC1) signaling pathway, and increase protein synthesis under prolonged muscle disuse conditions. However, the mechanism underlying prolonged muscle disuse-induced mTORC1 signaling activation remains unclear. The mevalonate pathway activates the mTORC1 signaling pathway via the prenylation and activation of Ras homolog enriched in brain (Rheb). Therefore, we investigated the effects of hindlimb unloading (HU) for 14 days on the mevalonate and mTORC1 signaling pathways in the plantaris muscle, a fast-twitch muscle, in adult male rats. Rats were divided into HU and control groups. The plantaris muscles of both groups were harvested after the treatment period, and the expression and phosphorylation levels of metabolic and intracellular signaling proteins were analyzed using Western blotting. We found that HU increased the expression of 3-hydroxy-3-methylglutaryl-coenzyme A reductase, the rate-limiting enzyme of the mevalonate pathway, and activated the mTORC1 signaling pathway without activating AKT, an upstream activator of mTORC1. Furthermore, HU increased prenylated Rheb. Collectively, these findings suggest that the activated mevalonate pathway may be involved in the activation of the Rheb/mTORC1 signaling pathway without AKT activation in fast-twitch muscles under prolonged disuse conditions.


Mevalonic Acid , Proto-Oncogene Proteins c-akt , Rats , Male , Animals , Mechanistic Target of Rapamycin Complex 1/metabolism , Mevalonic Acid/metabolism , Mevalonic Acid/pharmacology , Proto-Oncogene Proteins c-akt/metabolism , TOR Serine-Threonine Kinases/metabolism , Hindlimb Suspension/physiology , Signal Transduction/physiology , Muscle, Skeletal/metabolism , Muscular Atrophy/metabolism
2.
J Therm Biol ; 119: 103801, 2024 Jan.
Article En | MEDLINE | ID: mdl-38310810

Skeletal muscle is a highly plastic tissue. The role of heat shock protein 72 (Hsp72) in heat stress-induced skeletal muscle hypertrophy has been well demonstrated; however, the precise mechanisms remain unclear. Essential amino acids, such as leucine, mainly mediate muscle protein synthesis. We investigated the effects of pre-heating and increased Hsp72 expression on the mechanistic target of rapamycin (mTOR) signaling and protein synthesis following leucine administration in rat gastrocnemius muscle. To ensure increased Hsp72 expression in both the red and white portions of the muscle, one leg of male Wistar rats (10-week-old, n = 23) was heat-stressed in 43 °C water for 30 min twice at a 48-h-interval (heat-stressed leg, HS leg). The contralateral leg served as a non-heated internal control (CT leg). After the recovery period (48 h), rats were divided into the pre-administration or oral leucine administration groups. We harvested the gastrocnemius muscle (red and white parts) prior to administration and 30 and 90 min after leucine treatment (n = 7-8 per group) and intramuscular signaling responses to leucine ingestion were determined using western blotting. Heat stress significantly upregulated the expression of Hsp72 and was not altered by leucine administration. Although the phosphorylation levels of mTOR/S6K1 and ERK were similar regardless of heating, 4E-BP1 was less phosphorylated in the HS legs than the CT legs after leucine administration in the red portion of the muscles (P < 0.05). Moreover, c-Myc expression differed significantly after leucine administration in both the red and white portions of the muscles. Our findings indicate that following oral leucine administration, pre-heating partially blunted the muscle protein synthesis signaling response in the rat gastrocnemius muscle.


Heating , Signal Transduction , Rats , Male , Animals , Leucine/pharmacology , Rats, Sprague-Dawley , Rats, Wistar , TOR Serine-Threonine Kinases/metabolism , TOR Serine-Threonine Kinases/pharmacology , Muscle, Skeletal/metabolism , Muscle Proteins/metabolism , Muscle Proteins/pharmacology , Dietary Supplements
3.
Physiol Rep ; 12(1): e15913, 2024 Jan.
Article En | MEDLINE | ID: mdl-38185480

Heat stress (HS) induces Akt/mTOR phosphorylation and FoxO3a signaling; however, whether a prior increase in heat shock protein 72 (HSP72) expression affects intracellular signaling following eccentric exercise remains unclear. We analyzed the effects of HS pretreatment on intramuscular signaling in response to acute exercise in 10-week-old male Wistar rats (n = 24). One leg of each rat was exposed to HS and the other served as an internal control (CT). Post-HS, rats were either rested or subjected to downhill treadmill running. Intramuscular signaling responses in the red and white regions of the gastrocnemius muscle were analyzed before, immediately after, or 1 h after exercise (n = 8/group). HS significantly increased HSP72 levels in both deep red and superficial white regions. Although HS did not affect exercise-induced mTOR signaling (S6K1/ERK) responses in the red region, mTOR phosphorylation in the white region was significantly higher in CT legs than in HS legs after exercise. Thr308 phosphorylation of Akt showed region-specific alteration with a decrease in the red region and an increase in the white region immediately after downhill running. Overall, a prior increase in HSP72 expression elicits fiber type-specific changes in exercise-induced Akt and mTOR phosphorylation in rat gastrocnemius muscle.


Heat Stress Disorders , Proto-Oncogene Proteins c-akt , Male , Rats , Animals , Rats, Wistar , Signal Transduction , TOR Serine-Threonine Kinases , HSP72 Heat-Shock Proteins , Muscle, Skeletal
5.
Physiol Rep ; 11(10): e15695, 2023 05.
Article En | MEDLINE | ID: mdl-37226378

This study investigated the impact of long-term physical inactivity on hepatic cytoprotective- and inflammatory-related protein expressions in young rats and the subsequent apoptotic response during microgravity stress simulated by tail suspension. Four-week-old male Wistar rats were randomly assigned to the control (CT) and physical inactivity (IN) groups. The floor space of the cages provided to the IN group was reduced to half of that provided to the CT group. After 8 weeks, rats in both groups (n = 6-7) underwent tail suspension. Their livers were harvested immediately before (0 day) or 1, 3, and 7 days after tail suspension. Levels of hepatic heat shock protein 72 (HSP72), an anti-apoptotic protein, reduced over 7 days of tail suspension in the IN group than in the CT group (p < 0.01). Fragmented nucleosomes in the cytoplasmic fraction of the liver, an apoptotic index, were drastically increased by physical inactivity and tail suspension, and this change was significantly greater after 7 days of tail suspension in the IN group than in the CT group (p < 0.01). The apoptotic response was accompanied by the upregulation of pro-apoptotic proteins (cleaved caspase-3 and -7). Moreover, the levels of other pro-apoptotic proteins (tumor necrosis factor-1α and histone deacetylase 5) were also significantly higher in the IN than in the CT group (p < 0.05). Our results indicated that 8 weeks of physical inactivity decreased hepatic HSP72 levels and promoted hepatic apoptosis during the subsequent 7 days of tail suspension.


Apoptosis , Hindlimb Suspension , Male , Rats , Animals , Hindlimb Suspension/adverse effects , Rats, Wistar , Liver , HSP72 Heat-Shock Proteins , Tumor Necrosis Factor-alpha
6.
Biochem Biophys Rep ; 32: 101398, 2022 Dec.
Article En | MEDLINE | ID: mdl-36467545

Chronic inflammation is considered as an etiology of obesity and type 2 diabetes. Brown adipose tissue (BAT) of obese animals shows increased inflammation. Regular exercise has anti-inflammatory effects; however, the effects of exercise training on BAT inflammation in obese animals remain unclear. Thus, this study aimed to investigate the effects of exercise training on inflammation-related signaling in the BAT of obese and diabetic rats. Male Otsuka Long-Evans Tokushima Fatty (OLETF) rats, an obese/diabetic rodent model, were randomly divided into either sedentary (n = 11) or exercise training (n = 8) groups. Long-Evans Tokushima Otsuka (LETO; n = 9) rats were used as the nondiabetic sedentary controls. Exercise training using a treadmill was conducted 4 days per week for 20 weeks, starting at 5 weeks old. As a result, exercise training attenuated the phosphorylation levels of p65 and mitogen-activated protein kinases in the BAT of OLETF rats, concurrently with the improvement of obesity and systemic glucose tolerance. Moreover, exercise training decreased oxidative stress and increased the antioxidant and anti-inflammatory protein levels in the BAT. Conversely, exercise training did not alter the expression levels of uncoupling protein-1 and oxidative phosphorylation-related proteins in the BAT, which were lower in the OLETF rats than the LETO rats. In conclusion, our data suggest that exercise training prevents the activation of inflammatory signaling in the BAT of obese/diabetic rats.

7.
Eur J Pharmacol ; 931: 175223, 2022 Sep 15.
Article En | MEDLINE | ID: mdl-35988789

Losartan, an angiotensin II type 1 receptor blocker, exerts protective effect on soleus muscle atrophy in female rats. Thus, we aimed to examine the effect of losartan treatment on the recovery of atrophied soleus muscles. Female Wistar rats were subjected to hindlimb unloading for 7 d and then reloading for 7 d with either phosphate-buffered saline (PBS; n = 9) or losartan (40 mg/kg/day; n = 9). The soleus muscles were removed at rest (sedentary control [SED]; n = 9), after 7 d of hindlimb unloading (HU; n = 9), and after 7 d of reloading (HUR-PBS or HUR-LOS; n = 9 each). The absolute and relative weights, and fiber cross-sectional area (CSA) of the soleus muscles of rats in the HU group were significantly reduced as compared to those of the rats in the SED group at 7 d post-hindlimb unloading. Seven days of reloading significantly increased the muscle weights of rats in the HUR-PBS and HUR-LOS groups, with the recovery rate of the absolute muscle weight and type I fiber CSA being significantly higher in the HUR-LOS group (6.1% and 10.1%, respectively) than in the HUR-PBS group (4.7% and 5.2%, respectively) (p < 0.05). Moreover, the absolute and relative muscle weight in HUR-PBS were lower than SED; however, no significant difference was observed between the SED and HUR-LOS groups. CSAs of type I and IIa fiber were significantly higher in the HUR-LOS group than in the HU group. Losartan administration during reloading resulted in increased Smad1/5/8 and mTOR signaling and decreased Smad2/3 signaling and protein ubiquitination, facilitating the recovery of atrophied soleus muscle. Therefore, losartan administration-induced muscle recovery may partially be attributed to enhanced Smad1/5/8 and mTOR signaling activation, and reduced activation of canonical TGF-ß signaling (Smad2/3) in the soleus muscle.


Hindlimb Suspension , Losartan , Animals , Female , Hindlimb , Losartan/pharmacology , Losartan/therapeutic use , Muscle, Skeletal/metabolism , Muscular Atrophy/metabolism , Rats , Rats, Wistar , Smad Proteins/metabolism , TOR Serine-Threonine Kinases/metabolism
8.
Article En | MEDLINE | ID: mdl-35805823

This study aimed to evaluate the association between locomotive syndrome (LS) and daily physical activity (PA) in community-dwelling older adults. This cross-sectional study included 80 healthy Japanese older adults (40 men and 40 women; age: 60-79 years). Habitual daily PA was evaluated using a triaxial wrist accelerometer. Participants were divided into two groups based on the results of the two-step test, stand-up test, and 25-question geriatric locomotive function scale. Binomial logistic regression analysis was conducted to examine the statistical relationships between daily PA and category of LS, adjusting for age from adjusted odds ratio (adjusted OR) with the 95 percent confidence intervals (95%CI) and bootstrap 95%CI. The mean step count and time spent on moderate to vigorous physical activity (MVPA) were significantly higher among non-LS participants than among LS participants in women, but not in men. Logistic regression analyses indicated that spending longer than 28 min/day on MVPA was significantly associated with a lower likelihood of LS relative to short time category under 28 min/day in women (adjusted OR = 0.12, 95%CI = 0.02-0.59, bootstrap 95%CI = 0.01-0.43), but not in men. This study suggests that in community-dwelling older women, those with higher MVPA had lower odds of LS, and daily MVPA was associated with LS, but not in men. Therefore, the associations between LS and daily physical activity were partly dependent on sex differences.


Exercise , Independent Living , Aged , Cross-Sectional Studies , Female , Humans , Japan/epidemiology , Male , Middle Aged , Syndrome
9.
J Physiol Sci ; 72(1): 6, 2022 Mar 09.
Article En | MEDLINE | ID: mdl-35264097

We investigated the protective effect of losartan, an angiotensin II type 1 receptor blocker, on soleus muscle atrophy. Age-matched male and female Wistar rats were subjected to hindlimb unloading, and the soleus muscle was removed on days 1 and 7 for analysis. Females showed greater reductions in relative weight and myofiber cross-sectional area of the soleus muscle than males on day 7 post-hindlimb unloading. Losartan partially protected females against muscle atrophy. Activation of the canonical TGF-ß signaling pathway, assessed via Smad2/3 phosphorylation, was lower in females following losartan treatment and associated with lower levels of protein ubiquitination after 1 (myofibril) and 7 (cytosol) days of unloading. However, no effect was observed in non-canonical TGF-ß signaling (p44/p42 and p38 MAPK phosphorylation) in males or females during unloading. Our results suggest that losartan provides partial protection against hindlimb unloading-induced soleus muscle atrophy in female rats, possibly associated with decreased canonical TGF-ß signaling.


Hindlimb Suspension , Losartan , Animals , Female , Hindlimb , Hindlimb Suspension/physiology , Losartan/metabolism , Losartan/pharmacology , Male , Muscle, Skeletal/metabolism , Muscular Atrophy/metabolism , Rats , Rats, Wistar , Signal Transduction/physiology , Transforming Growth Factor beta/metabolism , Transforming Growth Factor beta/pharmacology
10.
PLoS One ; 17(2): e0264171, 2022.
Article En | MEDLINE | ID: mdl-35213577

We investigated whether time-of-day dependent changes in the rat soleus (SOL) muscle size, after eccentric exercises, operate via the mechanistic target of rapamycin (mTOR) signaling pathway. For our first experiment, we assigned 9-week-old male Wistar rats randomly into four groups: light phase (zeitgeber time; ZT6) non-trained control, dark phase (ZT18) non-trained control, light phase-trained, and dark phase-trained. Trained animals performed 90 min of downhill running once every 3 d for 8 weeks. The second experiment involved dividing 9-week-old male Wistar rats to control and exercise groups. The latter were subjected to 15 min of downhill running at ZT6 and ZT18. The absolute (+12.8%) and relative (+9.4%) SOL muscle weights were higher in the light phase-trained group. p70S6K phosphorylation ratio was 42.6% higher in the SOL muscle of rats that had exercised only in light (non-trained ZT6). Collectively, the degree of muscle hypertrophy in SOL is time-of-day dependent, perhaps via the mTOR/p70S6K signaling.


Circadian Rhythm , Muscle, Skeletal/metabolism , Physical Conditioning, Animal , Running , Signal Transduction , Animals , Male , Rats , Rats, Wistar , Ribosomal Protein S6 Kinases, 70-kDa/metabolism , TOR Serine-Threonine Kinases/metabolism
11.
BMC Geriatr ; 21(1): 464, 2021 08 18.
Article En | MEDLINE | ID: mdl-34407763

BACKGROUND: Resistance training has been recommended as an effective measure against age-related loss of muscle mass and muscle strength, called sarcopenia, even in older adults. However, despite subjecting each participant to the same training program, the training effect solely depended on the individual. This study aimed to evaluate whether certain blood parameters influenced the effect of a low-load resistance training program on muscle thickness in the community-dwelling elderly population. METHODS: Sixty-nine community-dwelling Japanese (49 women and 20 men) subjects aged 69.4 ± 6.5 years were included. Low-load resistance training was performed twice a week for 12 weeks. Muscle thickness at the anterior aspects of the thigh (AT) was measured using a B-mode ultrasound device, and 22 blood parameter levels were assessed before and after the program. We checked the first quartile value of each parameter to establish cutoff values, and participants were divided into low or normal groups for each parameter. RESULTS: A low-load resistance training program significantly increased muscle thickness at the AT. The interaction between time and groups was examined at low (< 4.1 g/dL) versus normal (≥ 4.1 g/dL) serum albumin (Alb) levels. Although there was no difference in muscle thickness at the AT before the training intervention, the hypertrophic effects were higher in the normal serum Alb level group than in the low serum Alb level group. The binomial logistic regression analysis showed that participants in the low serum Alb group had an odds ratio of 7.08 for decreased muscle thickness at the AT. The effect of a low-load resistance training program on lower limb muscle thickness appears to be limited in participants with low serum Alb levels before training interventions. CONCLUSIONS: Serum Alb level may act as a biomarker to predict the effects of low-load resistance training programs on muscle hypertrophy in elderly individuals. TRIAL REGISTRATION: This study was retrospectively registered in UMIN-Clinical Trial Registry (CTR), ID: UMIN000042759 (date of registration, 14 Dec 2020).


Resistance Training , Aged , Biomarkers , Female , Humans , Independent Living , Japan , Male , Muscle Strength , Muscle, Skeletal/diagnostic imaging , Serum Albumin
12.
BMC Musculoskelet Disord ; 22(1): 639, 2021 Jul 24.
Article En | MEDLINE | ID: mdl-34303339

BACKGROUND: Low muscle strength has been focused on as an essential characteristic of sarcopenia, and the 30-s chair stand test (CS-30) could be a particularly useful test for assessing muscle strength. While it is speculated to be a beneficial tool for the assessment of sarcopenia, this remains to be verified. In this study, we examined the reliability and optimal diagnostic score of the CS-30 for assessing sarcopenia in elderly Japanese participants. METHODS: This cross-sectional study included 678 participants (443 females and 235 males) who underwent the test for sarcopenia as per the Asian Working Group for Sarcopenia (AWGS) 2019, the CS-30 test, and the isometric knee-extension muscle strength test. ROC analysis was used to estimate the optimal CS-30 scores at which sarcopenia was detected. RESULTS: CS-30 scores were positively associated with sarcopenia (OR: 0.88; 95% CI:0.82-0.93). The AUC of the CS-30 for sarcopenia definition were 0.84 (p < 0.001) for females and 0.80 (p < 0.001) for males. The optimal number of stands in the CS-30 that predicted sarcopenia was 15 for females (sensitivity, 76.4%; specificity, 76.8%) and 17 for males (sensitivity, 75.0%; specificity, 71.7%). CONCLUSIONS: The CS-30 was found to be a reliable test for sarcopenia screening in the elderly Japanese population.


Sarcopenia , Aged , Cross-Sectional Studies , Female , Hand Strength , Humans , Japan/epidemiology , Male , Muscle Strength , Reproducibility of Results , Sarcopenia/diagnosis , Sarcopenia/epidemiology
13.
Clin Transl Sci ; 14(4): 1512-1523, 2021 07.
Article En | MEDLINE | ID: mdl-33742769

Mechanical ventilation (MV) is a life-saving instrument used to provide ventilatory support for critically ill patients and patients undergoing surgery. Unfortunately, an unintended consequence of prolonged MV is the development of inspiratory weakness due to both diaphragmatic atrophy and contractile dysfunction; this syndrome is labeled ventilator-induced diaphragm dysfunction (VIDD). VIDD is clinically important because diaphragmatic weakness is an important contributor to problems in weaning patients from MV. Investigations into the pathogenesis of VIDD reveal that oxidative stress is essential for the rapid development of VIDD as redox disturbances in diaphragm fibers promote accelerated proteolysis. Currently, no standard treatment exists to prevent VIDD and, therefore, developing a strategy to avert VIDD is vital. Guided by evidence indicating that activation of the classical axis of the renin-angiotensin system (RAS) in diaphragm fibers promotes oxidative stress and VIDD, we hypothesized that activation of the nonclassical RAS signaling pathway via angiotensin 1-7 (Ang1-7) will protect against VIDD. Using an established animal model of prolonged MV, our results disclose that infusion of Ang1-7 protects the diaphragm against MV-induced contractile dysfunction and fiber atrophy in both fast and slow muscle fibers. Further, Ang1-7 shielded diaphragm fibers against MV-induced mitochondrial damage, oxidative stress, and protease activation. Collectively, these results reveal that treatment with Ang1-7 protects against VIDD, in part, due to diminishing oxidative stress and protease activation. These important findings provide robust evidence that Ang1-7 has the therapeutic potential to protect against VIDD by preventing MV-induced contractile dysfunction and atrophy of both slow and fast muscle fibers.


Angiotensin I/administration & dosage , Diaphragm/drug effects , Muscle Weakness/prevention & control , Muscular Disorders, Atrophic/prevention & control , Peptide Fragments/administration & dosage , Respiration, Artificial/adverse effects , Animals , Diaphragm/physiopathology , Disease Models, Animal , Female , Humans , Infusions, Intravenous , Muscle Contraction/drug effects , Muscle Contraction/physiology , Muscle Weakness/etiology , Muscle Weakness/physiopathology , Muscular Disorders, Atrophic/etiology , Muscular Disorders, Atrophic/physiopathology , Oxidative Stress/drug effects , Rats
14.
J Appl Physiol (1985) ; 130(4): 1214-1225, 2021 04 01.
Article En | MEDLINE | ID: mdl-33600278

This study investigated the effects of long-term physical inactivity in adolescent on subsequent hindlimb unloading-induced muscle atrophy in rat soleus muscle. First, 3-wk-old male Wistar rats were assigned to an age-matched control (n = 6) or a physical inactivity (n = 8) group. Rats in the physical inactivity group were housed in narrow cages with approximately half the usual floor space for 8 wk to limit range of movement. Whole body energy consumption was measured, and the blood, organs, femoral bone, and hindlimb muscles were removed. We found that long-term physical inactivity did not affect the metabolic and physiological characteristics of growing rats. Then, fifty-six 3-wk-old male Wistar rats were assigned randomly into control (n = 28) and physical inactivity (n = 28) groups. After 8 wk, the rats in both groups underwent hindlimb unloading. The soleus muscles were removed before unloading (0 day), and 1, 3, and 7 days after unloading (n = 7 for each). Although the soleus muscle weight was significantly decreased after 7 days of hindlimb unloading in both groups, the decrease was drastic in the inactive group. A significant interaction between inactivity and unloading (P < 0.01) was observed according to the 4-hydroxynonenal-conjugated protein levels and the histone deacetylase 4 (HDAC4) and NF-κB protein levels. HDAC4 and NF-κB p65 protein levels in the physical inactivity group increased significantly 1 day after hindlimb unloading, along with the mRNA levels of their downstream targets myogenin and muscle RING finger protein 1 (MuRF1). Subsequent protein ubiquitination was upregulated by long-term physical inactivity (P < 0.05).NEW & NOTEWORTHY Long-term physical inactivity exacerbates hindlimb unloading-induced disuse muscle atrophy in young rat soleus muscles, possibly mediated by oxidative stress-induced protein ubiquitination via HDAC4- and NF-κB p65-induced MuRF1 mRNA upregulation.


Hindlimb Suspension , Sedentary Behavior , Animals , Hindlimb , Male , Muscle, Skeletal/pathology , Muscular Atrophy/etiology , Muscular Atrophy/pathology , Rats , Rats, Wistar
15.
Sports Med Health Sci ; 3(3): 148-156, 2021 Sep.
Article En | MEDLINE | ID: mdl-35784524

Endurance exercise training promotes a protective phenotype in skeletal muscle known as exercise preconditioning. Exercise preconditioning protects muscle fibers against a variety of threats including inactivity-induced muscle atrophy. The mechanism(s) responsible for exercise preconditioning remain unknown and are explored in these experiments. Specifically, we investigated the impact of endurance exercise training on key components of the renin-angiotensin system (RAS). The RAS was targeted because activation of the classical axis of the RAS pathway via angiotensin II type I receptors (AT1Rs) promotes muscle atrophy whereas activation of the non-classical RAS axis via Mas receptors (MasRs) inhibits the atrophic signaling of the classical RAS pathway. Guided by prior studies, we hypothesized that an exercise-induced decrease in AT1Rs and/or increases in MasRs in skeletal muscle fibers is a potential mechanism responsible for exercise preconditioning. Following endurance exercise training in rats, we examined the abundance of AT1Rs and MasRs in both locomotor and respiratory muscles. Our results indicate that endurance exercise training does not alter the protein abundance of AT1Rs or MasRs in muscle fibers from the diaphragm, plantaris, and soleus muscles compared to sedentary controls (p â€‹> â€‹0.05). Furthermore, fluorescent angiotensin II (AngII) binding analyses confirm our results that exercise preconditioning does not alter the protein abundance of AT1Rs in the diaphragm, plantaris, and soleus (p â€‹> â€‹0.05). This study confirms that exercise-induced changes in RAS receptors are not a key mechanism that contributes to the beneficial effects of exercise preconditioning in skeletal muscle fibers.

16.
J Sports Sci Med ; 20(4): 635-641, 2021 12.
Article En | MEDLINE | ID: mdl-35321137

Although locomotive syndrome (LS) is a condition of reduced mobility, little information is available regarding the loss of site-specific skeletal muscle mass. The aim of the present study is to examine site-specific muscle loss in elderly males with LS. A total of 100 men ranging in age from 65 to 74 years were divided into two groups (LS and non-LS) using LS risk tests including the stand-up test, two-step test, and the 25-question geriatric locomotive function scale Muscle thickness (MTH) at eight sites-anterior and posterior thigh (AT and PT, respectively), anterior and posterior lower leg (AL and PL, respectively), rectus abdominis (RA), anterior and posterior upper arm (AU and PU, respectively), and anterior forearm (AF)-was evaluated using B-mode ultrasound. Furthermore, the 30-s chair stand test (CS-30), 10-m walking time, zig-zag walking time, and sit-up test were assessed as physical functions. There were no significant differences in age and body mass index between the LS and non-LS groups. The percentage of skeletal muscle was lower in the LS group than in the non-LS group. Although there were no differences in the MTH of AU, PU, AF, PT, Al and PL, site-specific muscle loss was observed at RA and AT in the LS group. CS-30, 10-m walking time, zig-zag walking time, and sit-up test in the LS group were all worse than those in the non-LS group. The MTHs of RA and AT were both correlated to those physical functions. In conclusion, the LS group had site-specific muscle loss and worse physical functions. This study suggests that site-specific changes may be associated with age-related physical functions. These results may suggest what the essential characteristics of LS are.


Muscle Strength , Thigh , Abdomen , Aged , Female , Humans , Locomotion/physiology , Male , Muscle Strength/physiology , Muscle, Skeletal/diagnostic imaging , Syndrome
17.
Redox Biol ; 38: 101802, 2021 01.
Article En | MEDLINE | ID: mdl-33279868

Mechanical ventilation (MV) is a life-saving intervention for many critically ill patients. Unfortunately, an unintended consequence of prolonged MV is the rapid development of diaphragmatic atrophy and contractile dysfunction, known as ventilator-induced diaphragm dysfunction (VIDD). Although the mechanism(s) responsible for VIDD are not fully understood, abundant evidence reveals that oxidative stress leading to the activation of the major proteolytic systems (i.e., autophagy, ubiquitin-proteasome, caspase, and calpain) plays a dominant role. Of the proteolytic systems involved in VIDD, calpain has received limited experimental attention due to the longstanding dogma that calpain plays a minor role in inactivity-induced muscle atrophy. Guided by preliminary experiments, we tested the hypothesis that activation of calpains play an essential role in MV-induced oxidative stress and the development of VIDD. This premise was rigorously tested by transgene overexpression of calpastatin, an endogenous inhibitor of calpains. Animals with/without transfection of the calpastatin gene in diaphragm muscle fibers were exposed to 12 h of MV. Results confirmed that overexpression of calpastatin barred MV-induced activation of calpain in diaphragm fibers. Importantly, deterrence of calpain activation protected the diaphragm against MV-induced oxidative stress, fiber atrophy, and contractile dysfunction. Moreover, prevention of calpain activation in the diaphragm forstalled MV-induced mitochondrial dysfunction and prevented MV-induced activation of caspase-3 along with the transcription of muscle specific E3 ligases. Collectively, these results support the hypothesis that calpain activation plays an essential role in the early development of VIDD. Further, these findings provide the first direct evidence that calpain plays an important function in inactivity-induced mitochondrial dysfunction and oxidative stress in skeletal muscle fibers.


Calpain , Respiration, Artificial , Animals , Calpain/genetics , Calpain/metabolism , Diaphragm/metabolism , Humans , Mitochondria , Muscle Weakness/etiology , Muscle Weakness/metabolism , Muscular Atrophy/genetics , Muscular Atrophy/metabolism
18.
PLoS One ; 15(12): e0243660, 2020.
Article En | MEDLINE | ID: mdl-33296434

Excessive nitric oxide (NO) production and mitochondrial dysfunction can activate protein degradation in disuse-induced skeletal muscle atrophy. However, the increase in NO production in atrophied muscles remains controversial. In addition, although several studies have investigated the PTEN-induced kinase 1 (PINK1)/Parkin pathway, a mitophagy pathway, in atrophied muscle, the involvement of this pathway in soleus muscle atrophy is unclear. In this study, we investigated the involvement of neuronal nitric oxide synthase (nNOS) and the PINK1/Parkin pathway in soleus muscle atrophy induced by 14 days of hindlimb unloading (HU) in adult rats. HU lowered the weight of the soleus muscles. nNOS expression showed an increase in atrophied soleus muscles. Although HU increased malondialdehyde as oxidative modification of the protein, it decreased 6-nitrotryptophan, a marker of protein nitration. Additionally, the nitrosocysteine content and S-nitrosylated Parkin were not altered, suggesting the absence of excessive nitrosative stress after HU. The expression of PINK1 and Parkin was also unchanged, whereas the expression of heat shock protein 70 (HSP70), which is required for Parkin activity, was reduced in atrophied soleus muscles. Moreover, we observed accumulation and reduced ubiquitination of high molecular weight mitofusin 2, which is a target of Parkin, in atrophied soleus muscles. These results indicate that excessive NO is not produced in atrophied soleus muscles despite nNOS accumulation, suggesting that excessive NO dose not mediate in soleus muscle atrophy at least after 14 days of HU. Furthermore, the PINK1/Parkin pathway may not play a role in mitophagy at this time point. In contrast, the activity of Parkin may be downregulated because of reduced HSP70 expression, which may contribute to attenuated degradation of target proteins in the atrophied soleus muscles after 14 days of HU. The present study provides new insights into the roles of nNOS and a protein degradation pathway in soleus muscle atrophy.


Mitochondria/pathology , Muscular Atrophy/pathology , Nitric Oxide Synthase Type I/metabolism , Protein Kinases/metabolism , Ubiquitin-Protein Ligases/metabolism , Animals , Disease Models, Animal , GTP Phosphohydrolases/metabolism , Hindlimb Suspension/adverse effects , Humans , Male , Malondialdehyde/metabolism , Mitochondrial Proteins/metabolism , Mitophagy , Muscle, Skeletal/pathology , Muscular Atrophy/etiology , Nitric Oxide/metabolism , Proteolysis , Rats , Ubiquitination
19.
J Sports Sci Med ; 19(4): 721-726, 2020 12.
Article En | MEDLINE | ID: mdl-33239946

This study aimed to clarify whether low-load resistance training at a low frequency (twice a week) using body weight and elastic band improves muscle size, muscle strength, and physical functions and to compare the training effects between supervised training and a combination of supervised and unsupervised training in untrained older adults. Fifty-one older adults (ages: 57-75 years) selected to either a supervised (S) training group (n = 34) or a combined supervised and unsupervised (SU) group (n = 17). Both groups performed low-load resistance training composed of nine exercises for 12 weeks. The S group participated in supervised exercise sessions twice a week, and the SU group performed a supervised exercise session once a week and an unsupervised exercise session at home also once a week. For muscle thicknesses in the anterior aspects of the forearm, upper arm, and thigh and the posterior aspect of the thigh, group × time interactions were observed (p < 0.05). The hypertrophic effects were higher in the S group. Isometric knee extension strength and physical functions increased similarly in both groups. Low-load resistance training using body weight and elastic band twice a week for 12 weeks induces muscle hypertrophy and increases muscle strength and physical functions in older adults. Although the muscle hypertrophic effects are greater in the S group than in the SU group, the other effects were similar between the groups.


Muscle Strength , Muscle, Skeletal/physiology , Resistance Training/methods , Aged , Arm , Female , Forearm , Humans , Male , Middle Aged , Muscle, Skeletal/growth & development , Organ Size , Resistance Training/instrumentation , Thigh
20.
J Physiol Sci ; 70(1): 55, 2020 Nov 27.
Article En | MEDLINE | ID: mdl-33246401

Aging is associated with a progressive loss of skeletal muscle mass and strength, resulting in frailty and lower quality of life in older individuals. At present, a standard of clinical or pharmacological care to prevent the adverse effects of aging does not exist. Determining the mechanism(s) responsible for muscular atrophy in disused aged muscle is a required key step for the development of effective countermeasures. Studies suggest an age-related differential response of genes and signalings to muscle disuse in both rodents and humans, implying the possibility that effective countermeasures to prevent disuse muscle atrophy may be age-specific. Notably, exercise preconditioning can attenuate disuse-induced muscular atrophy in rodent and human skeletal muscles; however, information on age-specific mechanisms of this exercise-induced protection remains limited. This mini-review aimed to summarize the protective effects of acute exercise preconditioning on muscular atrophy in aged muscle and provide potential mechanisms for its preventive effect on skeletal muscle wasting.


Exercise , Muscle, Skeletal/physiopathology , Muscular Atrophy/prevention & control , Muscular Atrophy/physiopathology , Age Factors , Aged , Humans , Quality of Life
...