Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 47
1.
eNeuro ; 10(10)2023 10.
Article En | MEDLINE | ID: mdl-37890993

Functional neural circuits in the cerebral cortex are established through specific neural connections between excitatory and various inhibitory cell types. However, the molecular mechanisms underlying synaptic partner recognition remain unclear. In this study, we examined the impact of clustered protocadherin-γ (cPcdhγ) gene deletion in parvalbumin-positive (PV+) cells on intralaminar and translaminar neural circuits formed between PV+ and pyramidal (Pyr) cells in the primary visual cortex (V1) of male and female mice. First, we used whole-cell recordings and laser-scan photostimulation with caged glutamate to map excitatory inputs from layer 2/3 to layer 6. We found that cPcdhγ-deficient PV+ cells in layer 2/3 received normal translaminar inputs from Pyr cells through layers 2/3-6. Second, to further elucidate the effect on PV+-Pyr microcircuits within intralaminar layer 2/3, we conducted multiple whole-cell recordings. While the overall connection probability of PV+-Pyr cells remained largely unchanged, the connectivity of PV+-Pyr was significantly different between control and PV+-specific cPcdhγ-conditional knock-out (PV-cKO) mice. In control mice, the number of reciprocally connected PV+ cells was significantly higher than PV+ cells connected one way to Pyr cells, a difference that was not significant in PV-cKO mice. Interestingly, the proportion of highly reciprocally connected PV+ cells to Pyr cells with large unitary IPSC (uIPSC) amplitudes was reduced in PV-cKO mice. Conversely, the proportion of middle reciprocally connected PV+ cells to Pyr cells with large uIPSC amplitudes increased compared with control mice. This study demonstrated that cPcdhγ in PV+ cells modulates their reciprocity with Pyr cells in the cortex.


Parvalbumins , Protocadherins , Mice , Female , Male , Animals , Parvalbumins/metabolism , Inhibitory Postsynaptic Potentials , Pyramidal Cells/physiology , Cerebral Cortex/metabolism , Interneurons/metabolism
2.
Nat Commun ; 14(1): 6077, 2023 09 28.
Article En | MEDLINE | ID: mdl-37770450

Excitatory spiny stellate neurons are prominently featured in the cortical circuits of sensory modalities that provide high salience and high acuity representations of the environment. These specialized neurons are considered developmentally linked to bottom-up inputs from the thalamus, however, the molecular mechanisms underlying their diversification and function are unknown. Here, we investigated this in mouse somatosensory cortex, where spiny stellate neurons and pyramidal neurons have distinct roles in processing whisker-evoked signals. Utilizing spatial transcriptomics, we identified reciprocal patterns of gene expression which correlated with these cell-types and were linked to innervation by specific thalamic inputs during development. Genetic manipulation that prevents the acquisition of spiny stellate fate highlighted an important role for these neurons in processing distinct whisker signals within functional cortical columns, and as a key driver in the formation of specific whisker-related circuits in the cortex.


Neurons , Vibrissae , Animals , Vibrissae/physiology , Neurons/metabolism , Pyramidal Cells/physiology , Neurites , Somatosensory Cortex/physiology , Thalamus/physiology
3.
Proc Natl Acad Sci U S A ; 120(9): e2217011120, 2023 02 28.
Article En | MEDLINE | ID: mdl-36812195

Subplate neurons are early-born cortical neurons that transiently form neural circuits during perinatal development and guide cortical maturation. Thereafter, most subplate neurons undergo cell death, while some survive and renew their target areas for synaptic connections. However, the functional properties of the surviving subplate neurons remain largely unknown. This study aimed to characterize the visual responses and experience-dependent functional plasticity of layer 6b (L6b) neurons, the remnants of subplate neurons, in the primary visual cortex (V1). Two-photon Ca2+ imaging was performed in V1 of awake juvenile mice. L6b neurons showed broader tunings for orientation, direction, and spatial frequency than did layer 2/3 (L2/3) and L6a neurons. In addition, L6b neurons showed lower matching of preferred orientation between the left and right eyes compared with other layers. Post hoc 3D immunohistochemistry confirmed that the majority of recorded L6b neurons expressed connective tissue growth factor (CTGF), a subplate neuron marker. Moreover, chronic two-photon imaging showed that L6b neurons exhibited ocular dominance (OD) plasticity by monocular deprivation during critical periods. The OD shift to the open eye depended on the response strength to the stimulation of the eye to be deprived before starting monocular deprivation. There were no significant differences in visual response selectivity prior to monocular deprivation between the OD changed and unchanged neuron groups, suggesting that OD plasticity can occur in L6b neurons showing any response features. In conclusion, our results provide strong evidence that surviving subplate neurons exhibit sensory responses and experience-dependent plasticity at a relatively late stage of cortical development.


Visual Cortex , Mice , Animals , Visual Cortex/physiology , Neurons/physiology , Dominance, Ocular , Eye , Neuronal Plasticity/physiology
4.
Biochem Biophys Res Commun ; 638: 176-183, 2023 01 01.
Article En | MEDLINE | ID: mdl-36462491

Bromovalerylurea (BU), an acyl urea derivative, was originally developed as a hypnotic/sedative. We recently reported that BU at a dose of 50 mg/kg ameliorates sepsis, Parkinson's disease, and traumatic brain injury in Wistar rat models through its anti-inflammatory actions on microglia and macrophages. However, since BU was developed more than 100 years ago, its hypnotic mechanism and characteristics are poorly understood. Herein, we conducted an electroencephalogram (EEG) study and found that BU, when administered at a dose of more than 125 mg/kg but not at a dose of 50 mg/kg in Wistar rats, significantly increased non-rapid eye movement (NREM) sleep duration and dose-dependently decreased rapid eye movement (REM) sleep duration. This characteristic of sleep induced by BU is similar to the effect of compounds such as barbiturate, benzodiazepine, and z-drugs, all of which require γ-aminobutyric acid A receptors (GABAAR) for hypnotic/sedative activity. To investigate whether BU could potentiate GABAAergic neurotransmission, we conducted a whole-cell patch-clamp recording from pyramidal neurons in rat cortical slices to detect spontaneous GABAAR-mediated inhibitory postsynaptic currents (IPSCs). We found that BU dose-dependently prolonged IPSCs. Importantly, the prolonged IPSCs were not attenuated by flumazenil, a benzodiazepine receptor antagonist, suggesting that modulation of IPSCs by BU is mediated by different mechanisms from that of benzodiazepine. Taken together, these data elucidate the basic characteristics of the hypnotic effects of BU and suggest that the enhancement of GABAAR-mediated Cl- flux may be a possible mechanism that contributes to its hypnotic/sedative activity.


Bromisovalum , Receptors, GABA-A , Rats , Animals , Receptors, GABA-A/metabolism , Bromisovalum/pharmacology , Rats, Wistar , Hypnotics and Sedatives/pharmacology , Synaptic Transmission , Benzodiazepines/pharmacology , Sleep , gamma-Aminobutyric Acid/pharmacology
5.
Acta Neuropathol Commun ; 10(1): 172, 2022 11 29.
Article En | MEDLINE | ID: mdl-36447271

CCCTC-binding factor (CTCF) has a key role in higher-order chromatin architecture that is important for establishing and maintaining cell identity by controlling gene expression. In the mature cerebellum, CTCF is highly expressed in Purkinje cells (PCs) as compared with other cerebellar neurons. The cerebellum plays an important role in motor function by regulating PCs, which are the sole output neurons, and defects in PCs cause motor dysfunction. However, the role of CTCF in PCs has not yet been explored. Here we found that the absence of CTCF in mouse PCs led to progressive motor dysfunction and abnormal dendritic morphology in those cells, which included dendritic self-avoidance defects and a proximal shift in the climbing fibre innervation territory on PC dendrites. Furthermore, we found the peculiar lamellar structures known as "giant lamellar bodies" (GLBs), which have been reported in PCs of patients with Werdnig-Hoffman disease, 13q deletion syndrome, and Krabbe disease. GLBs are localized to PC dendrites and are assumed to be associated with neurodegeneration. They have been noted, however, only in case reports following autopsy, and reports of their existence have been very limited. Here we show that GLBs were reproducibly formed in PC dendrites of a mouse model in which CTCF was deleted. GLBs were not noted in PC dendrites at infancy but instead developed over time. In conjunction with GLB development in PC dendrites, the endoplasmic reticulum was almost absent around the nuclei, the mitochondria were markedly swollen and their cristae had decreased drastically, and almost all PCs eventually disappeared as severe motor deficits manifested. Our results revealed the important role of CTCF during normal development and in maintaining PCs and provide new insights into the molecular mechanism of GLB formation during neurodegenerative disease.


Neurodegenerative Diseases , Purkinje Cells , Animals , Mice , Lamellar Bodies , Cerebellum , Dendrites
6.
Neurochem Res ; 47(9): 2815-2825, 2022 Sep.
Article En | MEDLINE | ID: mdl-35933550

An appropriate sensory experience during the early developmental period is important for brain maturation. Dark rearing during the visual critical period delays the maturation of neuronal circuits in the visual cortex. Although the formation and structural plasticity of the myelin sheaths on retinal ganglion cell axons modulate the visual function, the effects of dark rearing during the visual critical period on the structure of the retinal ganglion cell axons and their myelin sheaths are still unclear. To address this question, mice were reared in a dark box during the visual critical period and then normally reared to adulthood. We found that myelin sheaths on the retinal ganglion cell axons of dark-reared mice were thicker than those of normally reared mice in both the optic chiasm and optic nerve. Furthermore, whole-mount immunostaining with fluorescent axonal labeling and tissue clearing revealed that the myelin internodal length in dark-reared mice was shorter than that in normally reared mice in both the optic chiasm and optic nerve. These findings demonstrate that dark rearing during the visual critical period affects the morphology of myelin sheaths, shortens and thickens myelin sheaths in the visual pathway, despite the mice being reared in normal light/dark conditions after the dark rearing.


Visual Cortex , Visual Pathways , Animals , Axons , Mice , Myelin Sheath/metabolism , Retinal Ganglion Cells/metabolism , Visual Cortex/metabolism
7.
Sci Adv ; 7(48): eabj9976, 2021 Nov 26.
Article En | MEDLINE | ID: mdl-34826242

Animals exhibit improved perception of lower-contrast visual objects after training. We explored this neuronal mechanism using multiple single-unit recordings from deep layers of the primary visual cortex (V1) of trained rats during orientation discrimination. We found that the firing rates of a subset of neurons increased by reducing luminance contrast, being at least above basal activities at low contrast. These low contrast­preferring neurons were rare during passive viewing without training or anesthesia after training. They fired more frequently in correct-choice than incorrect-choice trials. At single-neuron and population levels, they efficiently represented low-contrast orientations. Following training, in addition to generally enhanced excitation, the phase synchronization of spikes to beta oscillations at high contrast was stronger in putative inhibitory than excitatory neurons. The change in excitation-inhibition balance might contribute to low-contrast preference. Thus, low-contrast preference in V1 activity is strengthened in an experience-dependent manner, which may contribute to low-contrast visual discrimination.

8.
J Physiol ; 599(17): 4131-4152, 2021 09.
Article En | MEDLINE | ID: mdl-34275157

KEY POINTS: The mature functioning of the primary visual cortex depends on postnatal visual experience, while the orientation/direction preference is established just after eye-opening, independently of visual experience. In this study, we find that visual experience is required for the normal development of spatial-frequency (SF) preference in mouse primary visual cortex. We show that age- and experience-dependent shifts in optimal SFs towards higher frequencies occurred similarly in excitatory neurons and parvalbumin-positive interneurons. We also show that some excitatory and parvalbumin-positive neurons preferentially responded to visual stimuli consisting of very high SFs and posterior directions, and that the preference was established at earlier developmental stages than the SF preference in the standard frequency range. These results suggest that early visual experience is required for the development of SF representation and shed light on the experience-dependent developmental mechanisms underlying visual cortical functions. ABSTRACT: Early visual experience is crucial for the maturation of visual cortical functions. It has been demonstrated that the orientation and direction preferences in individual neurons of the primary visual cortex are well established immediately after eye-opening. The postnatal development of spatial frequency (SF) tuning and its dependence on visual experience, however, has not been thoroughly quantified. In this study, macroscopic imaging with flavoprotein autofluorescence revealed that the optimal SFs shift towards higher frequency values during normal development in mouse primary visual cortex. This developmental shift was impaired by binocular deprivation during the sensitive period, postnatal 3 weeks (PW3) to PW6. Furthermore, two-photon Ca2+ imaging revealed that the developmental shift of the optimal SFs, depending on visual experience, concurrently occurs in excitatory neurons and parvalbumin-positive inhibitory interneurons (PV neurons). In addition, some excitatory and PV neurons exhibited a preference for visual stimuli consisting of particularly high SFs and posterior directions at relatively early developmental stages; this preference was not affected by binocular deprivation. Thus, there may be two distinct developmental mechanisms for the establishment of SF preference depending on the frequency values. After PW3, SF tuning for neurons tuned to standard frequency ranges was sharper in excitatory neurons and slightly broader in PV neurons, leading to considerably attenuated SF tuning in PV neurons compared to excitatory neurons by PW5. Our findings suggest that early visual experience is far more important than orientation/direction selectivity for the development of the neural representation of the diverse SFs.


Visual Cortex , Animals , Interneurons , Mice , Neurons , Parvalbumins , Photic Stimulation
9.
Cereb Cortex ; 31(2): 1307-1315, 2021 01 05.
Article En | MEDLINE | ID: mdl-33063102

Integration of information processed separately in distributed brain regions is essential for brain functions. This integration is enabled by long-range projection neurons, and further, concerted interactions between long-range projections and local microcircuits are crucial. It is not well known, however, how this interaction is implemented in cortical circuits. Here, to decipher this logic, using callosal projection neurons (CPNs) in layer 2/3 of the mouse visual cortex as a model of long-range projections, we found that CPNs exhibited distinct response properties and fine-scale local connectivity patterns. In vivo 2-photon calcium imaging revealed that CPNs showed a higher ipsilateral (to their somata) eye preference, and that CPN pairs showed stronger signal/noise correlation than random pairs. Slice recordings showed CPNs were preferentially connected to CPNs, demonstrating the existence of projection target-dependent fine-scale subnetworks. Collectively, our results suggest that long-range projection target predicts response properties and local connectivity of cortical projection neurons.


Nerve Net/physiology , Neurons/physiology , Photic Stimulation/methods , Visual Cortex/physiology , Visual Pathways/physiology , Animals , Female , Male , Mice , Mice, Inbred C57BL , Nerve Net/chemistry , Neurons/chemistry , Organ Culture Techniques , Visual Cortex/chemistry , Visual Pathways/chemistry
10.
J Neurosci ; 40(40): 7637-7650, 2020 09 30.
Article En | MEDLINE | ID: mdl-32887743

Spatially-organized spontaneous activity is a characteristic feature of developing mammalian sensory systems. However, the transitions of spontaneous-activity spatial organization during development and related mechanisms remain largely unknown. We reported previously that layer 4 (L4) glutamatergic neurons in the mouse barrel cortex exhibit spontaneous activity with a patchwork-type pattern at postnatal day (P)5, which is during barrel formation. In the current work, we revealed that spontaneous activity in mouse barrel-cortex L4 glutamatergic neurons exhibits at least three phases during the first two weeks of postnatal development. Phase I activity has a patchwork-type pattern and is observed not only at P5, but also P1, before barrel formation. Phase II is found at P9, by which time barrel formation is completed, and exhibits broadly synchronized activity across barrel borders. Phase III emerges around P11 when L4-neuron activity is desynchronized. The Phase I activity, but not Phase II or III activity, is blocked by thalamic inhibition, demonstrating that the Phase I to II transition is associated with loss of thalamic dependency. Dominant-negative (DN)-Rac1 expression in L4 neurons hampers the Phase II to III transition. It also suppresses developmental increases in spine density and excitatory synapses of L4 neurons in the second postnatal week, suggesting that Rac1-mediated synapse maturation could underlie the Phase II to III transition. Our findings revealed the presence of distinct mechanisms for Phase I to II and Phase II to III transition. They also highlighted the role of a small GTPase in the developmental desynchronization of cortical spontaneous activity.SIGNIFICANCE STATEMENT Developing neocortex exhibits spatially-organized spontaneous activity, which plays a critical role in cortical circuit development. The features of spontaneous-activity spatial organization and the mechanisms underlying its changes during development remain largely unknown. In the present study, using two-photon in vivo imaging, we revealed three phases (Phases I, II, and III) of spontaneous activity in barrel-cortex layer 4 (L4) glutamatergic neurons during the first two postnatal weeks. We also demonstrated the presence of distinct mechanisms underlying phase transitions. Phase I to II shift arose from the switch in the L4-neuron driving source, and Phase II to III transition relied on L4-neuron Rac1 activity. These results provide new insights into the principles of developmental transitions of neocortical spontaneous-activity spatial patterns.


Neurogenesis , Neurons/physiology , Somatosensory Cortex/embryology , Synapses/physiology , Animals , Glutamic Acid/metabolism , Membrane Potentials , Mice , Neurons/cytology , Neurons/metabolism , Neuropeptides/metabolism , Somatosensory Cortex/cytology , Somatosensory Cortex/physiology , Synapses/metabolism , rac1 GTP-Binding Protein/metabolism
11.
Nat Commun ; 10(1): 4560, 2019 10 08.
Article En | MEDLINE | ID: mdl-31594935

The gustatory system plays a critical role in sensing appetitive and aversive taste stimuli for evaluating food quality. Although taste preference is known to change depending on internal states such as hunger, a mechanistic insight remains unclear. Here, we examine the neuronal mechanisms regulating hunger-induced taste modification. Starved mice exhibit an increased preference for sweetness and tolerance for aversive taste. This hunger-induced taste modification is recapitulated by selective activation of orexigenic Agouti-related peptide (AgRP)-expressing neurons in the hypothalamus projecting to the lateral hypothalamus, but not to other regions. Glutamatergic, but not GABAergic, neurons in the lateral hypothalamus function as downstream neurons of AgRP neurons. Importantly, these neurons play a key role in modulating preferences for both appetitive and aversive tastes by using distinct pathways projecting to the lateral septum or the lateral habenula, respectively. Our results suggest that these hypothalamic circuits would be important for optimizing feeding behavior under fasting.


Habenula/physiology , Hunger/physiology , Hypothalamic Area, Lateral/physiology , Septal Nuclei/physiology , Taste/physiology , Agouti-Related Protein/metabolism , Animals , Appetitive Behavior/physiology , GABAergic Neurons/metabolism , Habenula/cytology , Hypothalamic Area, Lateral/cytology , Male , Mice , Models, Animal , Neural Pathways/physiology , Optogenetics , Patch-Clamp Techniques , Septal Nuclei/cytology , Stereotaxic Techniques
12.
Sci Rep ; 9(1): 3445, 2019 03 05.
Article En | MEDLINE | ID: mdl-30837489

MicroRNA-124 (miR-124) is evolutionarily highly conserved among species and one of the most abundantly expressed miRNAs in the developing and mature central nervous system (CNS). Previous studies reported that miR-124 plays a role in CNS development, such as neuronal differentiation, maturation, and survival. However, the role of miR-124 in normal brain function has not yet been revealed. Here, we subjected miR-124-1+/- mice, to a comprehensive behavioral battery. We found that miR-124-1+/- mice showed impaired prepulse inhibition (PPI), methamphetamine-induced hyperactivity, and social deficits. Whole cell recordings using prefrontal cortex (PFC) slices showed enhanced synaptic transmission in layer 5 pyramidal cells in the miR-124-1+/- PFC. Based on the results of behavioral and electrophysiological analysis, we focused on genes involved in the dopaminergic system and identified a significant increase of Drd2 expression level in the miR-124-1+/- PFC. Overexpression or knockdown of Drd2 in the control or miR-124-1+/- PFC demonstrates that aberrant Drd2 signaling leads to impaired PPI. Furthermore, we identified that expression of glucocorticoid receptor gene Nr3c1, which enhances Drd2 expression, increased in the miR-124-1+/- PFC. Taken together, the current study suggests that miR-124 dosage modulates PFC function through repressing the Drd2 pathway, suggesting a critical role of miR-124 in normal PFC function.


Dopamine/metabolism , Dopaminergic Neurons/metabolism , MicroRNAs/genetics , Prefrontal Cortex/physiology , 3' Untranslated Regions , Animals , Behavior, Animal , Disease Models, Animal , Gene Expression Regulation , Haploinsufficiency , Mice , Mice, Knockout , Pyramidal Cells/metabolism , RNA Interference , Sensory Gating/genetics , Synaptic Transmission/genetics
13.
Sci Rep ; 8(1): 16536, 2018 11 08.
Article En | MEDLINE | ID: mdl-30410053

The corticospinal (CS) tract emerged and evolved in mammals, and is essentially involved in voluntary movement. Over its phylogenesis, CS innervation gradually invaded to the ventral spinal cord, eventually making direct connections with spinal motoneurons (MNs) in higher primates. Despite its importance, our knowledge of the origin of the direct CS-MN connections is limited; in fact, there is controversy as to whether these connections occur in subprimate mammals, such as rodents. Here we studied the retrograde transsynaptic connection between cortical neurons and MNs in mice by labeling the cells with recombinant rabies virus. On postnatal day 14 (P14), we found that CS neurons make direct connections with cervical MNs innervating the forearm muscles. Direct connections were also detected electrophysiologically in whole cell recordings from identified MNs retrogradely-labeled from their target muscles and optogenetic CS stimulation. In contrast, few, if any, lumbar MNs innervating hindlimbs showed direct connections on P18. Moreover, the direct CS-MN connections observed on P14 were later eliminated. The transient CS-MN cells were distributed predominantly in the M1 and S1 areas. These findings provide insight into the ontogeny and phylogeny of the CS projection and appear to settle the controversy about direct CS-MN connections in subprimate mammals.


Channelrhodopsins/metabolism , Motor Neurons/physiology , Optogenetics/methods , Pyramidal Tracts/physiology , Animals , Channelrhodopsins/genetics , Embryonic Development , Female , Forelimb/growth & development , Forelimb/innervation , Genetic Vectors/administration & dosage , Hindlimb/growth & development , Hindlimb/innervation , Male , Mice , Patch-Clamp Techniques , Rabies virus/physiology
14.
Glia ; 66(11): 2514-2525, 2018 11.
Article En | MEDLINE | ID: mdl-30240035

Oligodendrocytes myelinate neuronal axons to increase conduction velocity in the vertebrate central nervous system (CNS). Recent studies revealed that myelin formed on highly active axons is more stable compared to activity-silenced axons, and length of the myelin sheath is longer in active axons as well in the zebrafish larva. However, it is unclear whether oligodendrocytes preferentially myelinate active axons compared to sensory input-deprived axons in the adult mammalian CNS. It is also unknown if a single oligodendrocyte forms both longer myelin sheaths on active axons and shorter sheaths on input-deprived axons after long-term sensory deprivation. To address these questions, we applied simultaneous labeling of both neuronal axons and oligodendrocytes to mouse models of long-term monocular eyelid suturing and unilateral whisker removal. We found that individual oligodendrocytes evenly myelinated normal and input-deprived axons in the adult mouse CNS, and myelin sheath length on normal axons and input-deprived axons formed by a single oligodendrocyte were comparable. Importantly, the average length of the myelin sheath formed by individual oligodendrocytes did change depending on relative abundance of normal against sensory-input deprived axons, indicating an abundance of deprived axons near an oligodendrocyte impacts on myelination program by a single oligodendrocyte.


Central Nervous System/cytology , Gene Expression Regulation/physiology , Myelin Sheath/metabolism , Oligodendroglia/metabolism , Optic Chiasm/metabolism , Sensory Deprivation/physiology , Analysis of Variance , Animals , Animals, Newborn , Corpus Callosum/metabolism , Eye/innervation , Female , Luminescent Proteins/genetics , Luminescent Proteins/metabolism , Mice , Mice, Inbred C57BL , Transduction, Genetic , Vibrissae/innervation
15.
J Neurosci ; 38(36): 7852-7869, 2018 09 05.
Article En | MEDLINE | ID: mdl-30064994

Early visual experience is essential for the maturation of visual functions in which the primary visual cortex plays crucial roles. The extraction of visual features based on response selectivity of individual neurons, a fundamental process in the cortex, is basically established by eye opening in rodents, suggesting that visual experience is required for the development of neural functions other than feature extraction. Here, we show that synchronized firing, which is important for visual information processing, occurs selectively in adjacent neurons sharing similar orientation or spatial frequency preferences in layers 2-4 (upper layer) of rat visual cortex. This feature-selective spike synchrony was rudimentary when the eyes opened and became prominent during the first few weeks after eye opening only in the presence of pattern vision. In contrast, synchronization in layers 5-6 (lower layer) was almost independent of orientation similarity and more weakly dependent on spatial frequency similarity compared with upper layer synchrony. Lower layer synchronization was strengthened during development after eye opening independently of visual experience as a whole. However, the feature selectivity of synchronization was regulated by visual inputs, whereas the inputs without contours were sufficient for this regulation. Therefore, we speculate that feature-selective synchronization in the upper layer may convey detailed information on visual objects to the higher-order cortex, whereas weakly feature-selective synchronization in the lower layer may covey rather rough visual information to the subcortical areas or higher-order cortex. A major role of visual experience may be to establish the specific neural circuits underlying highly feature-selective synchronization.SIGNIFICANCE STATEMENT The neuronal mechanisms underlying experience-dependent improvement of visual functions still remain unresolved. In this study, we investigated whether early visual experience contributes to the development of synchronized neural firing in the primary visual cortex, which plays important roles in visual information processing. We found that synchronized firing depends more remarkably on the similarity of preferred visual stimuli in the upper than lower layer neurons. Pattern vision during development was required for the establishment of spike synchrony in the upper but not the lower layer. These findings provide a new view regarding the role of sensory experience in the functional development of the cortex and the differences in the modes of information processing in the upper and lower cortical layers.


Neurons/physiology , Sensory Deprivation/physiology , Visual Cortex/physiology , Visual Perception/physiology , Action Potentials/physiology , Animals , Female , Male , Orientation, Spatial/physiology , Photic Stimulation , Rats , Rats, Long-Evans , Visual Pathways/physiology
16.
Diabetes ; 66(9): 2372-2386, 2017 09.
Article En | MEDLINE | ID: mdl-28673934

The ventromedial hypothalamus (VMH) regulates glucose and energy metabolism in mammals. Optogenetic stimulation of VMH neurons that express steroidogenic factor 1 (SF1) induces hyperglycemia. However, leptin acting via the VMH stimulates whole-body glucose utilization and insulin sensitivity in some peripheral tissues, and this effect of leptin appears to be mediated by SF1 neurons. We examined the effects of activation of SF1 neurons with DREADD (designer receptors exclusively activated by designer drugs) technology. Activation of SF1 neurons by an intraperitoneal injection of clozapine-N-oxide (CNO), a specific hM3Dq ligand, reduced food intake and increased energy expenditure in mice expressing hM3Dq in SF1 neurons. It also increased whole-body glucose utilization and glucose uptake in red-type skeletal muscle, heart, and interscapular brown adipose tissue, as well as glucose production and glycogen phosphorylase a activity in the liver, thereby maintaining blood glucose levels. During hyperinsulinemic-euglycemic clamp, such activation of SF1 neurons increased insulin-induced glucose uptake in the same peripheral tissues and tended to enhance insulin-induced suppression of glucose production by suppressing gluconeogenic gene expression and glycogen phosphorylase a activity in the liver. DREADD technology is thus an important tool for studies of the role of the brain in the regulation of insulin sensitivity in peripheral tissues.


Insulin Resistance/physiology , Insulin/metabolism , Neurons/classification , RNA Splicing Factors/metabolism , Ventromedial Hypothalamic Nucleus/cytology , Animals , Clozapine/analogs & derivatives , Clozapine/pharmacology , Insulin/genetics , Integrases/genetics , Integrases/metabolism , Mice , Mice, Transgenic , Neurons/metabolism
17.
Front Mol Neurosci ; 10: 114, 2017.
Article En | MEDLINE | ID: mdl-28484370

Neuronal identity is generated by the cell-surface expression of clustered protocadherin (Pcdh) isoforms. In mice, 58 isoforms from three gene clusters, Pcdhα, Pcdhß, and Pcdhγ, are differentially expressed in neurons. Since cis-heteromeric Pcdh oligomers on the cell surface interact homophilically with that in other neurons in trans, it has been thought that the Pcdh isoform repertoire determines the binding specificity of synapses. We previously described the cooperative functions of isoforms from all three Pcdh gene clusters in neuronal survival and synapse formation in the spinal cord. However, the neuronal loss and the following neonatal lethality prevented an analysis of the postnatal development and characteristics of the clustered-Pcdh-null (Δαßγ) neural circuits. Here, we used two methods, one to generate the chimeric mice that have transplanted Δαßγ neurons into mouse embryos, and the other to generate double mutant mice harboring null alleles of both the Pcdh gene and the proapoptotic gene Bax to prevent neuronal loss. First, our results showed that the surviving chimeric mice that had a high contribution of Δαßγ cells exhibited paralysis and died in the postnatal period. An analysis of neuronal survival in postnatally developing brain regions of chimeric mice clarified that many Δαßγ neurons in the forebrain were spared from apoptosis, unlike those in the reticular formation of the brainstem. Second, in Δαßγ/Bax null double mutants, the central pattern generator (CPG) for locomotion failed to create a left-right alternating pattern even in the absence of neurodegeneraton. Third, calcium imaging of cultured hippocampal neurons showed that the network activity of Δαßγ neurons tended to be more synchronized and lost the variability in the number of simultaneously active neurons observed in the control network. Lastly, a comparative analysis for trans-homophilic interactions of the exogenously introduced single Pcdh-γA3 isoforms between the control and the Δαßγ neurons suggested that the isoform-specific trans-homophilic interactions require a complete match of the expressed isoform repertoire at the contacting sites between interactive neurons. These results suggested that combinations of clustered Pcdh isoforms are required for building appropriate neural circuits.

18.
Neurosci Res ; 120: 36-44, 2017 Jul.
Article En | MEDLINE | ID: mdl-28284708

Manipulation of visual experience can considerably modify visual responses of visual cortical neurons even in adulthood in the mouse, although the modification is less profound than that observed during the critical period. Our previous studies demonstrated that low-frequency (2Hz) stimulation for 15min applied to layer 4 induces T-type Ca2+ channel-dependent long-term potentiation (LTP) at excitatory synapses in layer 2/3 neurons of visual cortex during the critical period. In this study, we investigated whether low-frequency stimulation could induce synaptic plasticity in adult mice. We found that 2Hz stimulation induced LTP of extracellular field potentials evoked by stimulation of layer 4 in layer 2/3 in adulthood as during the critical period. LTP in adulthood was blocked by L-type, but not T-type, Ca2+ channel antagonists, whereas LTP during the critical period was blocked by T-type, but not L-type, Ca2+ channel antagonists. This developmental change in LTP was prevented by dark rearing. Under pharmacological blockade of GABAA receptors, T-type Ca2+ channel-dependent LTP occurred, whereas L-type Ca2+ channel-dependent LTP did not occur. These results suggest that different forms of synaptic plasticity can contribute separately to experience-dependent modification of visual responses during the critical period and in adulthood.


Long-Term Potentiation , Visual Cortex/physiology , Animals , Calcium Channels, L-Type/physiology , Calcium Channels, T-Type/physiology , Electric Stimulation , Mice, Inbred C57BL , Sensory Deprivation , Visual Cortex/growth & development
19.
Article En, Ja | MEDLINE | ID: mdl-30452829

Visual cortical neurons selectively respond to particular features of visual stimuli. Selective visual responsiveness is modified by visual expe- rience during development. We report that fine-scale networks of precisely interconnected excitatory neurons were embedded in the rat visual cortex and suggest that this network could be a functional unit for visual information processing. We also investigated the effects of visual dep- rivation on the development of visual cortical circuits. We used two kinds of deprivation, binocular deprivation and dark rearipg, which allowed visual inputs with only diffuse light and no visual input, respectively. The probability and strength of excitatory connections t layer 2/3 pyrami- dal cells increased during the 2 weeks after eye opening, and these changes were prevented by dark rearing, but not binocular eprivation. Fine- scale networks were absent just after eye opening and established during the following 2 weeks in rats reared with normal visual experience, but not with either type of deprivation. These results indicate that patterned vision is required for the emergence of the fine-scale network, whereas diffuse light stimulation is sufficient for the mituration of individual synapses. The critical role of early sensory experience may be to organize cell assemblies underlying visual information processing in the visual cortex.


Nerve Net , Visual Cortex/physiology , Animals , Neurons/physiology
20.
Glia ; 65(1): 93-105, 2017 01.
Article En | MEDLINE | ID: mdl-27759175

Oligodendrocytes myelinate neuronal axons during development and increase conduction velocity of neuronal impulses in the central nervous system. Neuronal axons extend from multiple brain regions and pass through the white matter; however, whether oligodendrocytes ensheath a particular set of axons or do so randomly within the mammalian brain remains unclear. We developed a novel method to visualize individual oligodendrocytes and axon derived from a particular brain region in mouse white matter using a combinational injection of attenuated rabies virus and adeno-associated virus. Using this method, we found that some populations of oligodendrocytes in the corpus callosum predominantly ensheathed axons derived from motor cortex or sensory cortex, while others ensheathed axons from both brain regions, suggesting heterogeneity in preference of myelination toward a particular subtype of neurons. Moreover, our newly established method is a versatile tool for analyzing precise morphology of each oligodendrocyte in animal models for demyelinating disorders and addressing the role of oligodendrocyte in higher brain functions. GLIA 2016. GLIA 2017;65:93-105.


Axons/virology , Myelin Sheath/virology , Oligodendroglia/virology , Rabies virus/metabolism , Animals , Female , Mice, Inbred C57BL , Synaptic Transmission/physiology
...