Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
1.
J Cell Physiol ; : e31387, 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-39014890

RESUMEN

Keratins are typical intermediate filament proteins of the epithelium that exhibit highly specific expression patterns related to the epithelial type and stage of cellular differentiation. They are important for cytoplasmic stability and epithelial integrity and are involved in various intracellular signaling pathways. Several keratins are associated with enamel formation. However, information on their expression patterns during tooth development remains lacking. In this study, we analyzed the spatiotemporal expression of keratin family members during tooth development using single-cell RNA-sequencing (scRNA-seq) and microarray analysis. scRNA-seq datasets from postnatal Day 1 mouse molars revealed that several keratins are highly expressed in the dental epithelium, indicating the involvement of keratin family members in cellular functions. Among various keratins, keratin 5 (Krt5), keratin 14 (Krt14), and keratin 17 (Krt17) are highly expressed in the tooth germ; KRT17 is specifically expressed in the stratum intermedium (SI) and stellate reticulum (SR). Depletion of Krt17 did not affect cell proliferation in the dental epithelial cell line SF2 but suppressed their differentiation ability. These results suggest that Krt17 is essential for SI cell differentiation. Furthermore, scRNA-seq results indicated that Krt5, Krt14, and Krt17 exhibited distinct expression patterns in ameloblast, SI, and SR cells. Our findings contribute to the elucidation of novel mechanisms underlying tooth development.

2.
Biochem Biophys Res Commun ; 682: 39-45, 2023 11 19.
Artículo en Inglés | MEDLINE | ID: mdl-37801988

RESUMEN

Cells sense and respond to extracellular mechanical stress through mechanotransduction receptors and ion channels, which regulate cellular behaviors such as cell proliferation and differentiation. Among them, PIEZO1, piezo-type mechanosensitive ion channel component 1, has recently been highlighted as a mechanosensitive ion channel in various cell types including mesenchymal stem cells. We previously reported that PIEZO1 is essential for ERK1/2 phosphorylation and osteoblast differentiation in bone marrow-derived mesenchymal stem cells (BMSCs), induced by hydrostatic pressure loading and treatment with the PIEZO1-specific activator Yoda1. However, the molecular mechanism underlying how PIEZO1 induces mechanotransduction remains unclear. In this study, we investigated that the role of the C-terminus in regulating extracellular Ca2+ influx and activating the ERK1/2 signaling pathway. We observed the activation of Fluo-4 AM in the Yoda1-stimulated human BMSC line UE7T-13, but not in a calcium-depleted cell culture medium. Similarly, Western blotting analysis revealed that Yoda1 treatment induced ERK1/2 phosphorylation, but this induction was not observed in calcium-depleted cell culture medium. To investigate the functional role of the C-terminus of PIEZO1, we generated HEK293 cells stably expressing the full-length mouse PIEZO1 (PIEZO1-FL) and a deletion-type PIEZO1 lacking the C-terminal intracellular region containing the R-Ras-binding domain (PIEZO1-ΔR-Ras). We found that Yoda1 treatment predominantly activated Flou-4 AM and ERK1/2 in PIEZO1-FL-trasfected cells but neither in PIEZO1-ΔR-Ras-transfected cells nor control cells. Our results indicate that the C-terminus of PIEZO1, which contains the R-Ras binding domain, plays an essential role in Ca2+ influx and activation of the ERK1/2 signaling pathway, suggesting that this domain is crucial for the mechanotransduction of osteoblastic differentiation in BMSCs.


Asunto(s)
Sistema de Señalización de MAP Quinasas , Mecanotransducción Celular , Humanos , Ratones , Animales , Mecanotransducción Celular/fisiología , Calcio/metabolismo , Células HEK293 , Transducción de Señal , Canales Iónicos/metabolismo , Calcio de la Dieta
3.
Biochem Biophys Res Commun ; 679: 167-174, 2023 10 30.
Artículo en Inglés | MEDLINE | ID: mdl-37703759

RESUMEN

Murine tooth germ development proceeds in continuous sequential steps with reciprocal interactions between the odontogenic epithelium and the adjacent mesenchyme, and several growth factor signaling pathways and their activation are required for tooth germ development. The expression of ADP-ribosylation factor (Arf)-like 4c (Arl4c) has been shown to induce cell proliferation, and is thereby involved in epithelial morphogenesis and tumorigenesis. In contrast, the other functions of Arl4c (in addition to cellular growth) are largely unknown. Although we recently demonstrated the involvement of the upregulated expression of Arl4c in the proliferation of ameloblastomas, which have the same origin as odontogenic epithelium, its effect on tooth germ development remains unclear. In the present study, single-cell RNA sequencing (scRNA-seq) analysis revealed that the expression of Arl4c, among 17 members of the Arf-family, was specifically detected in odontogenic epithelial cells, such as those of the stratum intermedium, stellate reticulum and outer enamel epithelium, of postnatal day 1 (P1) mouse molars. scRNA-seq analysis also demonstrated the higher expression of Arl4c in non-ameloblast and inner enamel epithelium, which include immature cells, of P7 mouse incisors. In the mouse tooth germ rudiment culture, treatment with SecinH3 (an inhibitor of the ARNO/Arf6 pathway) reduced the size, width and cusp height of the tooth germ and the thickness of the eosinophilic layer, which would involve the synthesis of dentin and enamel matrix organization. In addition, loss-of-function experiments using siRNAs and shRNA revealed that the expression of Arl4c was involved in cell proliferation and osteoblastic cytodifferentiation in odontogenic epithelial cells. Finally, RNA-seq analysis with a gene set enrichment analysis (GSEA) and Gene Ontology (GO) analysis showed that osteoblastic differentiation-related gene sets and/or GO terms were downregulated in shArl4c-expressing odontogenic epithelial cells. These results suggest that the Arl4c-ARNO/Arf6 pathway axis contributes to tooth germ development through osteoblastic/ameloblastic differentiation.


Asunto(s)
Ameloblastoma , Diente , Ratones , Animales , Germen Dentario , Células Epiteliales/metabolismo , Epitelio/metabolismo , Ameloblastoma/metabolismo , Diferenciación Celular , Diente/metabolismo
4.
Commun Biol ; 6(1): 766, 2023 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-37479880

RESUMEN

Postnatal cell fate is postulated to be primarily determined by the local tissue microenvironment. Here, we find that Mediator 1 (Med1) dependent epigenetic mechanisms dictate tissue-specific lineage commitment and progression of dental epithelia. Deletion of Med1, a key component of the Mediator complex linking enhancer activities to gene transcription, provokes a tissue extrinsic lineage shift, causing hair generation in incisors. Med1 deficiency gives rise to unusual hair growth via primitive cellular aggregates. Mechanistically, we find that MED1 establishes super-enhancers that control enamel lineage transcription factors in dental stem cells and their progenies. However, Med1 deficiency reshapes the enhancer landscape and causes a switch from the dental transcriptional program towards hair and epidermis on incisors in vivo, and in dental epithelial stem cells in vitro. Med1 loss also provokes an increase in the number and size of enhancers. Interestingly, control dental epithelia already exhibit enhancers for hair and epidermal key transcription factors; these transform into super-enhancers upon Med1 loss suggesting that these epigenetic mechanisms cause the shift towards epidermal and hair lineages. Thus, we propose a role for Med1 in safeguarding lineage specific enhancers, highlight the central role of enhancer accessibility in lineage reprogramming and provide insights into ectodermal regeneration.


Asunto(s)
Cabello , Secuencias Reguladoras de Ácidos Nucleicos , Animales , Ratones , Epidermis , Factores de Transcripción/genética , Esmalte Dental
5.
FASEB J ; 37(4): e22861, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36929047

RESUMEN

Enamel is formed by the repetitive secretion of a tooth-specific extracellular matrix and its decomposition. Calcification of the enamel matrix via hydroxyapatite (HAP) maturation requires pH cycling to be tightly regulated through the neutralization of protons released during HAP synthesis. We found that Gpr115, which responds to changes in extracellular pH, plays an important role in enamel formation. Gpr115-deficient mice show partial enamel hypomineralization, suggesting that other pH-responsive molecules may be involved. In this study, we focused on the role of Gpr111/Adgrf2, a duplicate gene of Gpr115, in tooth development. Gpr111 was highly expressed in mature ameloblasts. Gpr111-KO mice showed enamel hypomineralization. Dysplasia of enamel rods and high carbon content seen in Gpr111-deficient mice suggested the presence of residual enamel matrices in enamel. Depletion of Gpr111 in dental epithelial cells induced the expression of ameloblast-specific protease, kallikrein-related peptidase 4 (Klk4), suggesting that Gpr111 may act as a suppressor of Klk4 expression. Moreover, reduction of extracellular pH to 6.8 suppressed the expression of Gpr111, while the converse increased Klk4 expression. Such induction of Klk4 was synergistically enhanced by Gpr111 knockdown, suggesting that proper enamel mineralization may be linked to the modulation of Klk4 expression by Gpr111. Furthermore, our in vitro suppression of Gpr111 and Gpr115 expression indicated that their suppressive effect on calcification was additive. These results suggest that both Gpr111 and Gpr115 respond to extracellular pH, contribute to the expression of proteolytic enzymes, and regulate the pH cycle, thereby playing important roles in enamel formation.


Asunto(s)
Hipomineralización del Esmalte Dental , Receptores Acoplados a Proteínas G , Animales , Ratones , Ameloblastos/metabolismo , Hipomineralización del Esmalte Dental/genética , Hipomineralización del Esmalte Dental/metabolismo , Células Epiteliales/metabolismo , Concentración de Iones de Hidrógeno , Calicreínas/metabolismo , Receptores Acoplados a Proteínas G/genética
6.
J Biol Chem ; 299(5): 104638, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36963497

RESUMEN

Lipid rafts are membrane microdomains rich in cholesterol, sphingolipids, glycosylphosphatidylinositol-anchored proteins (GPI-APs), and receptors. These lipid raft components are localized at the plasma membrane and are essential for signal transmission and organogenesis. However, few reports have been published on the specific effects of lipid rafts on tooth development. Using microarray and single-cell RNA sequencing methods, we found that a GPI-AP, lymphocyte antigen-6/Plaur domain-containing 1 (Lypd1), was specifically expressed in preodontoblasts. Depletion of Lypd1 in tooth germ using an ex vivo organ culture system and in mouse dental pulp (mDP) cells resulted in the inhibition of odontoblast differentiation. Activation of bone morphogenetic protein (BMP) signaling by BMP2 treatment in mDP cells promoted odontoblast differentiation via phosphorylation of Smad1/5/8, while this BMP2-mediated odontoblast differentiation was inhibited by depletion of Lypd1. Furthermore, we created a deletion construct of the C terminus containing the omega site in LYPD1; this site is necessary for localizing GPI-APs to the plasma membrane and lipid rafts. We identified that this site is essential for odontoblast differentiation and morphological change of mDP cells. These findings demonstrated that LYPD1 is a novel marker of preodontoblasts in the developing tooth; in addition, they suggest that LYPD1 is important for tooth development and that it plays a pivotal role in odontoblast differentiation by regulating Smad1/5/8 phosphorylation through its effect as a GPI-AP in lipid rafts.


Asunto(s)
Diferenciación Celular , Proteínas Ligadas a GPI , Odontoblastos , Odontogénesis , Animales , Ratones , Proteínas Morfogenéticas Óseas/metabolismo , Membrana Celular/metabolismo , Regulación del Desarrollo de la Expresión Génica , Glicosilfosfatidilinositoles/metabolismo , Proteínas Ligadas a GPI/metabolismo , Microdominios de Membrana/metabolismo , Odontoblastos/citología , Odontoblastos/metabolismo , Dominios Proteicos
7.
Sci Rep ; 13(1): 3354, 2023 02 27.
Artículo en Inglés | MEDLINE | ID: mdl-36849572

RESUMEN

Recent advances in regenerative technology have made the regeneration of various organs using pluripotent stem cells possible. However, a simpler screening method for evaluating regenerated organs is required to apply this technology to clinical regenerative medicine in the future. We have developed a simple evaluation method using a mouse tooth germ culture model of organs formed by epithelial-mesenchymal interactions. In this study, we successfully established a simple method that controls tissue development in a temperature-dependent manner using a mouse tooth germ ex vivo culture model. We observed that the development of the cultured tooth germ could be delayed by low-temperature culture and resumed by the subsequent culture at 37 °C. Furthermore, the optimal temperature for the long-term preservation of tooth germ was 25 °C, a subnormothermic temperature that maintains the expression of stem cell markers. We also found that subnormothermic temperature induces the expression of cold shock proteins, such as cold-inducible RNA-binding protein, RNA-binding motif protein 3, and serine and arginine rich splicing factor 5. This study provides a simple screening method to help establish the development of regenerative tissue technology using a tooth organ culture model. Our findings may be potentially useful for making advances in the field of regenerative medicine.


Asunto(s)
Arginina , Proteínas y Péptidos de Choque por Frío , Animales , Técnicas de Cultivo de Órganos , Frío , Modelos Animales de Enfermedad
8.
Biochem Biophys Res Commun ; 650: 47-54, 2023 04 02.
Artículo en Inglés | MEDLINE | ID: mdl-36773339

RESUMEN

Iroquois homeobox (Irx) genes are TALE-class homeobox genes that are evolutionarily conserved across species and have multiple critical cellular functions in fundamental tissue development processes. Previous studies have shown that Irxs genes are expressed during tooth development. However, the precise roles of genes in teeth remain unclear. Here, we demonstrated for the first time that Irx3 is an essential molecule for the proliferation and differentiation of odontoblasts. Using cDNA synthesized from postnatal day 1 (P1) tooth germs, we examined the expression of all Irx genes (Irx1-Irx6) by RT-PCR and found that all genes except Irx4 were expressed in the tooth tissue. Irx1-Irx3 a were expressed in the dental epithelial cell line M3H1 cells, while Irx3 and Irx5 were expressed in the dental mesenchymal cell line mDP cells. Only Irx3 was expressed in both undifferentiated cell lines. Immunostaining also revealed the presence of IRX3 in the dental epithelial cells and mesenchymal condensation. Inhibition of endogenous Irx3 by siRNA blocks the proliferation and differentiation of mDP cells. Wnt3a, Wnt5a, and Bmp4 are factors involved in odontoblast differentiation and were highly expressed in mDP cells by quantitative PCR analysis. Interestingly, the expression of Wnt5a (but not Wnt3a or Bmp4) was suppressed by Irx3 siRNA. These results suggest that Irx3 plays an essential role in part through the regulation of Wnt5a expression during odontoblast proliferation and differentiation.


Asunto(s)
Proteínas de Homeodominio , Factores de Transcripción , Proteínas de Homeodominio/metabolismo , Factores de Transcripción/metabolismo , Odontoblastos/metabolismo , Genes Homeobox , Diferenciación Celular , Proliferación Celular
9.
J Oral Biosci ; 64(4): 400-409, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36270608

RESUMEN

OBJECTIVES: Epithelial-mesenchymal interactions are extremely important in tooth development and essential for ameloblast differentiation, especially during tooth formation. We aimed to identify the type of mesenchymal cells important in ameloblast differentiation. METHODS: We used two types of cell culture systems with chambers and found that a subset of debtal mesenchimal cells is important for the differentiatiuon of dental spithelial cells into ameloblasts. Further, we induced dental pulp stem cell-like cells from dental pulp stem cells using the small molecule compound BIO ( a GSK-3 inhibitor IX) to clarify the mechanism involved in ameloblast differentiation induced by dental pulp stem cells. RESULTS: The BIO-induced dental pulp cells promoted the expression of mesenchymal stem cell markers Oct3/4 and Bcrp1. Furthermore, we used artificial dental pulp stem cells induced by BIO to identify the molecules expressed in dental pulp stem cells required for ameloblast differentiation. Panx3 expression was induced in the dental pulp stem cell through interaction with the dental epithelial cells. In addition, ATP release from cells increased in Panx3-expressing cells. We also confirmed that ATP stimulation is accepted in dental epithelial cells. CONCLUSIONS: These results showed that the Panx3 expressed in dental pulp stem cells is important for ameloblast differentiation and that ATP release by Panx3 may play a role in epithelial-mesenchymal interaction.


Asunto(s)
Ameloblastos , Células Madre Mesenquimatosas , Ameloblastos/metabolismo , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Glucógeno Sintasa Quinasa 3/metabolismo , Adenosina Trifosfato/metabolismo
10.
Am J Orthod Dentofacial Orthop ; 162(5): e267-e276, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36123227

RESUMEN

INTRODUCTION: We evaluated the effects of secondary bone grafting (SBG) on oral health-related and generic health-related quality of life (OHRQOL and HRQOL, respectively) in preadolescent orthodontic patients with alveolar bone defects. METHODS: We divided 101 orthodontic patients aged 8-10 years into 3 groups: 39 general orthodontic patients, 18 patients with orofacial clefts who did not require SBG, and 44 patients with alveolar defects who required SBG using particulate cancellous bone and marrow obtained from the iliac crest. The participants completed the self-report Child Perceptions Questionnaire (CPQ) and Paediatric Quality of Life Inventory (version 4.0) for OHRQOL and HRQOL, respectively, and their scores were assessed. The quality of life (QOL) of patients who required SBG was examined before, 1 month, and 6 months after SBG. The relationships between OHRQOL or HRQOL and potential patient factors were also evaluated. RESULTS: Physical HRQOL subscale scores worsened 1 month after SBG, whereas the total OHRQOL and HRQOL scores before and after SBG showed no significant changes. OHRQOL and HRQOL showed no significant differences among the 3 groups before SBG. The presence of oronasal fistula was associated with poorer OHRQOL in patients with cleft lip and/or palate. CONCLUSIONS: SBG and orthodontic treatment had a relatively small impact on the QOL of the preadolescent children in this study. Understanding the influence of SBG and patient factors on QOL would enable better treatment and care for these patients.

11.
Sci Rep ; 12(1): 3093, 2022 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-35197531

RESUMEN

Development of chemotherapy has led to a high survival rate of cancer patients; however, the severe side effects of anticancer drugs, including organ hypoplasia, persist. To assume the side effect of anticancer drugs, we established a new ex vivo screening model and described a method for suppressing side effects. Cyclophosphamide (CPA) is a commonly used anticancer drug and causes severe side effects in developing organs with intensive proliferation, including the teeth and hair. Using the organ culture model, we found that treatment with CPA disturbed the growth of tooth germs by inducing DNA damage, apoptosis and suppressing cellular proliferation and differentiation. Furthermore, low temperature suppressed CPA-mediated inhibition of organ development. Our ex vivo and in vitro analysis revealed that low temperature impeded Rb phosphorylation and caused cell cycle arrest at the G1 phase during CPA treatment. This can prevent the CPA-mediated cell damage of DNA replication caused by the cross-linking reaction of CPA. Our findings suggest that the side effects of anticancer drugs on organ development can be avoided by maintaining the internal environment under low temperature.


Asunto(s)
Antineoplásicos/efectos adversos , Ciclofosfamida/efectos adversos , Temperatura , Puntos de Control del Ciclo Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Daño del ADN/efectos de los fármacos , Replicación del ADN/efectos de los fármacos , Fase G1/efectos de los fármacos , Humanos , Modelos Biológicos , Técnicas de Cultivo de Órganos
12.
J Cell Physiol ; 237(3): 1964-1979, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34957547

RESUMEN

Cell- and tissue-specific extracellular matrix (ECM) composition plays an important role in organ development, including teeth, by regulating cell behaviors, such as cell proliferation and differentiation. Here, we demonstrate for the first time that von Willebrand factor D and epidermal growth factor (EGF) domains (Vwde), a previously uncharacterized ECM protein, is specifically expressed in teeth and regulates cell proliferation and differentiation in inner enamel epithelial cells (IEEs) and enamel formation. We identified the Vwde as a novel ECM protein through bioinformatics using the NCBI expressed sequence tag database for mice. Vwde complementary DNA encodes 1773 amino acids containing a signal peptide, a von Willebrand factor type D domain, and tandem calcium-binding EGF-like domains. Real-time polymerase chain reaction demonstrated that Vwde is highly expressed in tooth tissue but not in other tissues including the brain, lung, heart, liver, kidney, and bone. In situ hybridization revealed that the IEEs expressed Vwde messenger RNA in developing teeth. Immunostaining showed that VWDE was localized at the proximal and the distal ends of the pericellular regions of the IEEs. Vwde was induced during the differentiation of mouse dental epithelium-derived M3H1 cells. Vwde-transfected M3H1 cells secreted VWDE protein into the culture medium and inhibited cell proliferation, whereas ameloblastic differentiation was promoted. Furthermore, Vwde increased the phosphorylation of extracellular signal-regulated kinase 1/2 and protein kinase B and strongly induced the expression of the intercellular junction protein, N-cadherin (Ncad). Interestingly, the suppression of endogenous Vwde inhibited the expression of Ncad. Finally, we created Vwde-knockout mice using the CRISPR-Cas9 system. Vwde-null mice showed low mineral density, rough surface, and cracks in the enamel, indicating the enamel hypoplasia phenotype. Our findings suggest that Vwde assembling the matrix underneath the IEEs is essential for Ncad expression and enamel formation.


Asunto(s)
Ameloblastos , Diferenciación Celular , Esmalte Dental , Proteínas de la Matriz Extracelular , Ameloblastos/citología , Animales , Cadherinas/genética , Cadherinas/metabolismo , Esmalte Dental/crecimiento & desarrollo , Proteínas de la Matriz Extracelular/metabolismo , Ratones , Ratones Noqueados
13.
Bone ; 154: 116210, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34592494

RESUMEN

Amelogenesis consists of secretory, transition, maturation, and post-maturation stages, and the morphological changes of ameloblasts at each stage are closely related to their function. p130 Crk-associated substrate (Cas) is a scaffold protein that modulates essential cellular processes, including cell adhesion, cytoskeletal changes, and polarization. The expression of p130Cas was observed from the secretory stage to the maturation stage in ameloblasts. Epithelial cell-specific p130Cas-deficient (p130CasΔepi-) mice exhibited enamel hypomineralization with chalk-like white mandibular incisors in young mice and attrition in aged mouse molars. A micro-computed tomography analysis and Vickers micro-hardness testing showed thinner enamel, lower enamel mineral density and hardness in p130CasΔepi- mice in comparison to p130Casflox/flox mice. Scanning electron microscopy, and an energy dispersive X-ray spectroscopy analysis indicated the disturbance of the enamel rod structure and lower Ca and P contents in p130CasΔepi- mice, respectively. The disorganized arrangement of ameloblasts, especially in the maturation stage, was observed in p130CasΔepi- mice. Furthermore, expression levels of enamel matrix proteins, such as amelogenin and ameloblastin in the secretory stage, and functional markers, such as alkaline phosphatase and iron accumulation, and Na+/Ca2++K+-exchanger in the maturation stage were reduced in p130CasΔepi- mice. These findings suggest that p130Cas plays important roles in amelogenesis (197 words).


Asunto(s)
Amelogénesis , Proteína Sustrato Asociada a CrK/metabolismo , Proteínas del Esmalte Dental , Ameloblastos/metabolismo , Animales , Proteínas del Esmalte Dental/metabolismo , Células Epiteliales/metabolismo , Ratones , Microtomografía por Rayos X
14.
J Cell Physiol ; 237(2): 1597-1606, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34812512

RESUMEN

Tissue-specific basic helix-loop-helix (bHLH) transcription factors play an important role in cellular differentiation. We recently identified AmeloD as a tooth-specific bHLH transcription factor. However, the role of AmeloD in cellular differentiation has not been investigated. The aim of this study was to elucidate the role of AmeloD in dental epithelial cell differentiation. We found that AmeloD-knockout (AmeloD-KO) mice developed an abnormal structure and altered ion composition of enamel in molars, suggesting that AmeloD-KO mice developed enamel hypoplasia. In molars of AmeloD-KO mice, the transcription factor Sox21 encoding SRY-Box transcription factor 21 and ameloblast differentiation marker genes were significantly downregulated. Furthermore, overexpression of AmeloD in the dental epithelial cell line M3H1 upregulated Sox21 and ameloblast differentiation marker genes, indicating that AmeloD is critical for ameloblast differentiation. Our study demonstrated that AmeloD is an important transcription factor in amelogenesis for promoting ameloblast differentiation. This study provides new insights into the mechanisms of amelogenesis.


Asunto(s)
Ameloblastos , Diente , Factores Generales de Transcripción/metabolismo , Ameloblastos/metabolismo , Amelogénesis/genética , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Diferenciación Celular/genética , Ratones , Ratones Noqueados , Factores de Transcripción/metabolismo
15.
Front Physiol ; 12: 748574, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34630166

RESUMEN

Connexin 43 (Cx43) is an integral membrane protein that forms gap junction channels. These channels mediate intercellular transport and intracellular signaling to regulate organogenesis. The human disease oculodentodigital dysplasia (ODDD) is caused by mutations in Cx43 and is characterized by skeletal, ocular, and dental abnormalities including amelogenesis imperfecta. To clarify the role of Cx43 in amelogenesis, we examined the expression and function of Cx43 in tooth development. Single-cell RNA-seq analysis and immunostaining showed that Cx43 is highly expressed in pre-secretory ameloblasts, differentiated ameloblasts, and odontoblasts. Further, we investigated the pathogenic mechanisms of ODDD by analyzing Cx43-null mice. These mice developed abnormal teeth with multiple dental epithelium layers. The expression of enamel matrix proteins such as ameloblastin (Ambn), which is critical for enamel formation, was significantly reduced in Cx43-null mice. TGF-ß1 induces Ambn transcription in dental epithelial cells. The induction of Ambn expression by TGF-ß1 depends on the density of the cultured cells. Cell culture at low densities reduces cell-cell contact and reduces the effect of TGF-ß1 on Ambn induction. When cell density was high, Ambn expression by TGF-ß1 was enhanced. This induction was inhibited by the gap junction inhibitors, oleamide, and 18α-grycyrrhizic acid and was also inhibited in cells expressing Cx43 mutations (R76S and R202H). TGF-ß1-mediated phosphorylation and nuclear translocation of ERK1/2, but not Smad2/3, were suppressed by gap junction inhibitors. Cx43 gap junction activity is required for TGF-ß1-mediated Runx2 phosphorylation through ERK1/2, which forms complexes with Smad2/3. In addition to its gap junction activity, Cx43 may also function as a Ca2+ channel that regulates slow Ca2+ influx and ERK1/2 phosphorylation. TGF-ß1 transiently increases intracellular calcium levels, and the increase in intracellular calcium over a short period was not related to the expression level of Cx43. However, long-term intracellular calcium elevation was enhanced in cells overexpressing Cx43. Our results suggest that Cx43 regulates intercellular communication through gap junction activity by modulating TGF-ß1-mediated ERK signaling and enamel formation.

16.
PeerJ ; 9: e11297, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33976983

RESUMEN

BACKGROUND: Myriad maxillo-mandibular occlusal relationships are observed in patients with isolated cleft palate (ICP), unlike in patients with other cleft types, such as cleft lip and palate. OBJECTIVES: This study aimed to categorise the characteristics of craniofacial morphology in patients with ICP, and investigate the clinical factors affecting these categorised morphological characteristics. METHODS: Thirty-six girls with ICP (age (mean ± SD): 5.36 ± 0.36 years) underwent cephalometric measurement. Their craniofacial morphology was categorised using cluster analysis. Profilograms were created and superimposed onto the standard Japanese profilograms to visualise the morphological characteristics of each group (cluster). The mean values and variations in the linear and angular measurements of each group were compared with the Japanese standards and statistically analysed using Dunnett's test after the analysis of variance. Fisher's exact test was used to analyse the differences between the cleft types (cleft in the hard and/or soft palate) and skills of the operating surgeons in the groups. RESULTS: Cluster analysis of craniofacial morphologies in patients with ICP resulted in the formation of three categories: the first cluster exhibited a relatively harmonious anteroposterior relationship between the maxilla and the mandible (22.2%); the second cluster exhibited crossbite owing to a significantly smaller maxilla (33.3%); and the third cluster exhibited a smaller mandible with posterior rotation showing skeletal class II malocclusion (44.4%). Differences in cleft types and surgeons were not associated with the distribution of patients in each cluster. CONCLUSIONS: Patients with ICP exhibited characteristic morphological patterns, such as bimaxillary retrusion or severe mandibular retrusion, besides the anterior crossbite frequently found in patients with cleft lip and palate . Understanding the typical morphological characteristics could enable better diagnostic categorisation of patients with ICP, which may eventually improve orthodontic treatment planning.

17.
J Cell Physiol ; 236(11): 7533-7543, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-33844290

RESUMEN

The epithelial-mesenchymal interactions are essential for the initiation and regulation of the development of teeth. Following the initiation of tooth development, numerous growth factors are secreted by the dental epithelium and mesenchyme that play critical roles in cellular differentiation. During tooth morphogenesis, the dental epithelial stem cells differentiate into several cell types, including inner enamel epithelial cells, which then differentiate into enamel matrix-secreting ameloblasts. Recently, we reported that the novel basic-helix-loop-helix transcription factor, AmeloD, is actively engaged in the development of teeth as a regulator of dental epithelial cell motility. However, the gene regulation mechanism of AmeloD is still unknown. In this study, we aimed to uncover the mechanisms regulating AmeloD expression during tooth development. By screening growth factors that are important in the early stages of tooth formation, we found that TGF-ß1 induced AmeloD expression and ameloblast differentiation in the dental epithelial cell line, SF2. TGF-ß1 phosphorylated ERK1/2 and Smad2/3 to induce AmeloD expression, whereas treatment with the MEK inhibitor, U0126, inhibited AmeloD induction. Promoter analysis of AmeloD revealed that the proximal promoter of AmeloD showed high activity in dental epithelial cell lines, which was enhanced following TGF-ß1 stimulation. These results suggested that TGF-ß1 activates AmeloD transcription via ERK1/2 phosphorylation. Our findings provide new insights into the mechanisms that govern tooth development.


Asunto(s)
Ameloblastos/metabolismo , Germen Dentario/metabolismo , Factores Generales de Transcripción/metabolismo , Transcripción Genética , Ameloblastos/efectos de los fármacos , Animales , Diferenciación Celular , Línea Celular , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Regulación del Desarrollo de la Expresión Génica , Ratones Noqueados , Morfogénesis , Fosforilación , Ratas , Transducción de Señal , Proteínas Smad Reguladas por Receptores/metabolismo , Germen Dentario/citología , Germen Dentario/efectos de los fármacos , Factores Generales de Transcripción/genética , Transcripción Genética/efectos de los fármacos , Factor de Crecimiento Transformador beta1/farmacología
18.
Int J Mol Sci ; 21(23)2020 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-33255698

RESUMEN

Dental enamel is hardest tissue in the body and is produced by dental epithelial cells residing in the tooth. Their cell fates are tightly controlled by transcriptional programs that are facilitated by fate determining transcription factors and chromatin regulators. Understanding the transcriptional program controlling dental cell fate is critical for our efforts to build and repair teeth. In this review, we describe the current understanding of these regulators essential for regeneration of dental epithelial stem cells and progeny, which are identified through transgenic mouse models. We first describe the development and morphogenesis of mouse dental epithelium in which different subpopulations of epithelia such as ameloblasts contribute to enamel formation. Then, we describe the function of critical factors in stem cells or progeny to drive enamel lineages. We also show that gene mutations of these factors are associated with dental anomalies in craniofacial diseases in humans. We also describe the function of the master regulators to govern dental lineages, in which the genetic removal of each factor switches dental cell fate to that generating hair. The distinct and related mechanisms responsible for the lineage plasticity are discussed. This knowledge will lead us to develop a potential tool for bioengineering new teeth.


Asunto(s)
Diferenciación Celular/genética , Células Epiteliales/metabolismo , Odontogénesis/genética , Transcripción Genética , Ameloblastos/citología , Ameloblastos/metabolismo , Animales , Células Epiteliales/citología , Epitelio/crecimiento & desarrollo , Epitelio/metabolismo , Regulación de la Expresión Génica/genética , Humanos , Ratones , Ratones Transgénicos , Diente/crecimiento & desarrollo
19.
Front Cell Dev Biol ; 8: 595593, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33195274

RESUMEN

There is growing evidence showing that tight junctions play an important role in developing enamel. Claudins are one of the main components of tight junctions and may have pivotal functions in modulating various cellular events, such as regulating cell differentiation and proliferation. Mutations in CLDN10 of humans are associated with HELIX syndrome and cause enamel defects. However, current knowledge regarding the expression patterns of claudins and the function of Cldn10 during tooth development remains fragmented. In this study, we aimed to analyze the expression patterns of claudin family members during tooth development and to investigate the role of Cldn10 in amelogenesis. Using cap analysis gene expression of developing mouse tooth germs compared with that of the whole body, we found that Cldn1 and Cldn10 were highly expressed in the tooth. Furthermore, single-cell RNA-sequence analysis using 7-day postnatal Krt14-RFP mouse incisors revealed Cldn1 and Cldn10 exhibited distinct expression patterns. Cldn10 has two isoforms, Cldn10a and Cldn10b, but only Cldn10b was expressed in the tooth. Immunostaining of developing tooth germs revealed claudin-10 was highly expressed in the inner enamel epithelium and stratum intermedium. We also found that overexpression of Cldn10 in the dental epithelial cell line, SF2, induced alkaline phosphatase (Alpl) expression, a marker of maturated stratum intermedium. Our findings suggest that Cldn10 may be a novel stratum intermedium marker and might play a role in cytodifferentiation of stratum intermedium.

20.
J Biol Chem ; 295(45): 15328-15341, 2020 11 06.
Artículo en Inglés | MEDLINE | ID: mdl-32868297

RESUMEN

Dental enamel, the hardest tissue in the human body, is derived from dental epithelial cell ameloblast-secreted enamel matrices. Enamel mineralization occurs in a strictly synchronized manner along with ameloblast maturation in association with ion transport and pH balance, and any disruption of these processes results in enamel hypomineralization. G protein-coupled receptors (GPCRs) function as transducers of external signals by activating associated G proteins and regulate cellular physiology. Tissue-specific GPCRs play important roles in organ development, although their activities in tooth development remain poorly understood. The present results show that the adhesion GPCR Gpr115 (Adgrf4) is highly and preferentially expressed in mature ameloblasts and plays a crucial role during enamel mineralization. To investigate the in vivo function of Gpr115, knockout (Gpr115-KO) mice were created and found to develop hypomineralized enamel, with a larger acidic area because of the dysregulation of ion composition. Transcriptomic analysis also revealed that deletion of Gpr115 disrupted pH homeostasis and ion transport processes in enamel formation. In addition, in vitro analyses using the dental epithelial cell line cervical loop-derived dental epithelial (CLDE) cell demonstrated that Gpr115 is indispensable for the expression of carbonic anhydrase 6 (Car6), which has a critical role in enamel mineralization. Furthermore, an acidic condition induced Car6 expression under the regulation of Gpr115 in CLDE cells. Thus, we concluded that Gpr115 plays an important role in enamel mineralization via regulation of Car6 expression in ameloblasts. The present findings indicate a novel function of Gpr115 in ectodermal organ development and clarify the molecular mechanism of enamel formation.


Asunto(s)
Ameloblastos/metabolismo , Esmalte Dental/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Animales , Células Cultivadas , Ratones , Ratones Noqueados , Ratas , Receptores Acoplados a Proteínas G/deficiencia , Receptores Acoplados a Proteínas G/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA