Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 69
1.
Pharmaceutics ; 16(5)2024 May 09.
Article En | MEDLINE | ID: mdl-38794300

Organic anion transporter 3 (OAT3), expressed at the basolateral membrane of kidney proximal tubule cells, facilitates the elimination of numerous metabolites, environmental toxins, and clinically important drugs. An earlier investigation from our laboratory revealed that OAT3 expression and transport activity can be upregulated by SUMOylation, a post-translational modification that covalently conjugates SUMO molecules to substrate proteins. Topotecan is a semi-synthetic derivative of the herbal extract camptothecin, approved by the FDA to treat several types of cancer. Ginkgolic acid (GA) is one of the major components in the extract of Ginkgo biloba leaves that has long been used in food supplements for preventing dementia, high blood pressure, and supporting stroke recovery. Both topotecan and GA have been shown to affect protein SUMOylation. In the current study, we tested our hypothesis that topotecan and GA may regulate OAT3 SUMOylation, expression, and transport function. Our data show that the treatment of OAT3-expressing cells with topotecan or GA significantly decreases the SUMOylation of OAT3 by 50% and 75%, respectively. The same treatment also led to substantial reductions in OAT3 expression and the OAT3-mediated transport of estrone sulfate, a prototypical substrate. Such reductions in cell surface expression of OAT3 correlated well with an increased rate of OAT3 degradation. Mechanistically, we discovered that topotecan enhanced the association between OAT3 and the SUMO-specific protease SENP2, a deSUMOylation enzyme, which contributed to the significant decrease in OAT3 SUMOylation. In conclusion, this study unveiled a novel role of topotecan and GA in inhibiting OAT3 expression and transport activity and accelerating OAT3 degradation by suppressing OAT3 SUMOylation. During comorbidity therapies, the use of topotecan or Ginkgo biloba extract could potentially decrease the transport activity of OAT3 in the kidneys, which will in turn affect the therapeutic efficacy and toxicity of many other drugs that are substrates for the transporter.

2.
Pharmaceutics ; 16(3)2024 Mar 20.
Article En | MEDLINE | ID: mdl-38543319

Drug transporters are membrane proteins, mediating, across cell membranes, the absorption, distribution, and excretion of a diverse array of endogenous and exogenous substances such as nutrients, metabolites, toxins, and drugs [...].

3.
Biochem Pharmacol ; 215: 115702, 2023 09.
Article En | MEDLINE | ID: mdl-37487877

Human organic anion transporter 4 (hOAT4), mainly expressed in the kidney and placenta, is essential for the disposition of numerous drugs, toxins, and endogenous substances. Insulin-like growth factor 1 (IGF-1) is a hormone generated in the liver and plays important roles in systemic growth, development, and metabolism. In the current study, we explored the regulatory effects of IGF-1 and downstream signaling on the transport activity, protein expression, and SUMOylation of hOAT4. We showed that IGF-1 significantly increased the transport activity, expression, and maximal transport velocity Vmax of hOAT4 in kidney-derived cells. This stimulatory effect of IGF-1 on hOAT4 activity was also confirmed in cells derived from the human placenta. The increased activity and expression were correlated well with the reduced degradation rate of hOAT4 at the cell surface. Furthermore, IGF-1 significantly increased hOAT4 SUMOylation, and protein kinase B (PKB)-specific inhibitors blocked the IGF-1-induced regulations on hOAT4. In conclusion, our study demonstrates that the hepatic hormone IGF-1 regulates hOAT4 expressed in the kidney and placenta through the PKB signaling pathway. Our results support the remote sensing and signaling theory, where OATs play a central role in the remote communications among distal tissues.


Insulin-Like Growth Factor I , Proto-Oncogene Proteins c-akt , Pregnancy , Female , Humans , Insulin-Like Growth Factor I/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Organic Anion Transporters, Sodium-Independent/metabolism , Signal Transduction , Hormones
4.
Pharmaceutics ; 15(6)2023 Jun 14.
Article En | MEDLINE | ID: mdl-37376173

Organic anion transporter 3 (OAT3), at the basolateral membrane of kidney proximal tubule cells, facilitates the elimination of numerous widely used drugs. Earlier investigation from our laboratory revealed that ubiquitin conjugation to OAT3 leads to OAT3 internalization from the cell surface, followed by degradation in the proteasome. In the current study, we examined the roles of chloroquine (CQ) and hydroxychloroquine (HCQ), two well-known anti-malarial drugs, in their action as proteasome inhibitors and their effects on OAT3 ubiquitination, expression, and function. We showed that in cells treated with CQ and HCQ, the ubiquitinated OAT3 was considerably enhanced, which correlated well with a decrease in 20S proteasome activity. Furthermore, in CQ- and HCQ-treated cells, OAT3 expression and OAT3-mediated transport of estrone sulfate, a prototypical substrate, were significantly increased. Such increases in OAT3 expression and transport activity were accompanied by an increase in the maximum transport velocity and a decrease in the degradation rate of the transporter. In conclusion, this study unveiled a novel role of CQ and HCQ in enhancing OAT3 expression and transport activity by preventing the degradation of ubiquitinated OAT3 in proteasomes.

5.
AAPS J ; 25(1): 13, 2023 01 10.
Article En | MEDLINE | ID: mdl-36627500

Organic anion transporter 1 (OAT1) expressed in the kidney plays an important role in the elimination of numerous anionic drugs used in the clinic. We report here that insulin, a pancreas-secreted hormone, regulated the expression and activity of kidney-specific OAT1 both in cultured cells and in rats. We showed that treatment of OAT1-expressing cells with insulin led to an increase in OAT1 expression, transport activity, and SUMOylation. Such insulin-induced increase was blocked by afuresertib, a specific inhibitor for protein kinase B (PKB), suggesting insulin regulates OAT1 through PKB signaling pathway. Furthermore, insulin stimulated transport activity and SUMOylation of endogenously expressed OAT1 in rat kidneys. In conclusion, our data support a remote sensing and signaling model, in which OAT1 plays an essential role in intercellular and inter-organ communication and in maintaining local and whole-body homeostasis. Such complex and dedicated communication is carried out by insulin, and PKB signaling and membrane sorting.


Insulin , Organic Anion Transport Protein 1 , Rats , Animals , Insulin/metabolism , Organic Anion Transport Protein 1/metabolism , Remote Sensing Technology , Kidney/metabolism , Signal Transduction , Pancreatic Hormones/metabolism , Insulin, Regular, Human , Organic Anion Transporters, Sodium-Independent/metabolism
6.
Biochem Pharmacol ; 208: 115387, 2023 02.
Article En | MEDLINE | ID: mdl-36549459

Organic anion transporter 3 (OAT3), an indispensable basolateral membrane transporter predominantly distributed in the kidney proximal tubules, mediated the systemic clearance of substrates including clinical drugs, nutrients, endogenous and exogenous metabolites, toxins, and critically sustains body homeostasis. Preliminary data in this study showed that classical proteasome inhibitors (e.g., MG132), but not lysosome inhibitors, significantly increased the OAT3 ubiquitination and OAT3-mediated transport of estrone sulfate (ES) in OAT3 stable expressing cells, indicating that proteasome rather than lysosome is involved in the intracellular fate of OAT3. Next, bortezomib and carfilzomib, two FDA-approved and widely applied anticancer agents through selective targeting proteasome, were further used to define the role of inhibiting proteasome in OAT3 regulation and related molecular mechanisms. The results showed that 20S proteasome activity in cell lysates was suppressed with bortezomib and carfilzomib treatment, leading to the increased OAT3 ubiquitination, stimulated transport activity of ES, enhanced OAT3 surface and total expression. The upregulated OAT3 function by proteasome inhibition was attributed to the augment in maximum transport velocity and stability of membrane OAT3. Lastly, in vivo study using Sprague Dawley rats validated that proteasome inhibition using bortezomib induced enhancement of OAT3 ubiquitination and membrane expression in kidney. These data suggest that activity of proteasome but not lysosome could have an impact on the physiological function of OAT3, and proteasome displayed a promising target for OAT3 regulation in vitro and in vivo, and could be used in restoring OAT3 impairment under pathological conditions, avoiding OAT3-associated toxicity and diseases, ensuring drug efficacy and safety.


Antineoplastic Agents , Proteasome Endopeptidase Complex , Rats , Animals , Proteasome Endopeptidase Complex/metabolism , Bortezomib/pharmacology , Organic Anion Transporters, Sodium-Independent/metabolism , Rats, Sprague-Dawley , Organic Anion Transport Protein 1
7.
BMC Mol Cell Biol ; 22(1): 53, 2021 Oct 18.
Article En | MEDLINE | ID: mdl-34663225

BACKGROUND: Organic anion transporter 1 (OAT1) is a drug transporter expressed on the basolateral membrane of the proximal tubule cells in kidneys. It plays an essential role in the disposition of numerous clinical therapeutics, impacting their pharmacological and toxicological properties. The activation of protein kinase C (PKC) is shown to facilitate OAT1 internalization from cell surface to intracellular compartments and thereby reducing cell surface expression and transport activity of the transporter. The PKC-regulated OAT1 internalization occurs through ubiquitination, a process catalyzed by a E3 ubiquitin ligase, neural precursor cell expressed developmentally down-regulated 4-2 (Nedd4-2). Nedd4-2 directly interacts with OAT1 and affects ubiquitination, expression and stability of the transporter. However, whether Nedd4-2 is a direct substrate for PKC-induced phosphorylation is unknown. RESULTS: In this study, we investigated the role of Nedd4-2 phosphorylation in the PKC regulation of OAT1. The results showed that PKC activation enhanced the phosphorylation of Nedd4-2 and increased the OAT1 ubiquitination, which was accompanied by a decreased OAT1 cell surface expression and transport function. And the effects of PKC could be reversed by PKC-specific inhibitor staurosporine. We further discovered that the quadruple mutant (T197A/S221A/S354A/S420A) of Nedd4-2 partially blocked the effects of PKC on Nedd4-2 phosphorylation and on OAT1 transport activity. CONCLUSIONS: Our investigation demonstrates that PKC regulates OAT1 likely through direct phosphorylation of Nedd4-2. And four phosphorylation sites (T197, S221, S354, and S420) of Nedd4-2 in combination play an important role in this regulatory process.


Organic Anion Transporters , Ubiquitin , Animals , COS Cells , Chlorocebus aethiops , Endocytosis , Nedd4 Ubiquitin Protein Ligases/genetics , Nedd4 Ubiquitin Protein Ligases/metabolism , Protein Kinase C/genetics , Protein Kinase C/metabolism , Ubiquitin/metabolism , Ubiquitin-Protein Ligases/metabolism
8.
AAPS J ; 23(2): 41, 2021 03 11.
Article En | MEDLINE | ID: mdl-33709304

Organic anion transporter 3 (OAT3) plays an important role in the disposition of various anionic drugs which impacts the pharmacokinetics and pharmacodynamics of the therapeutics, thus influencing the pharmacological effects and toxicity of the drugs. In this study, we investigated the effect of insulin on the regulation of OAT3 function, expression, and SUMOylation. We demonstrated that insulin induced an increase in OAT3 transport activity through a dose- and time-dependent manner in COS-7 cells. The insulin-induced elevation in OAT3 function was blocked by PKA inhibitor H89, which correlated well with OAT3 protein expression. Moreover, both PKA activator Bt2-cAMP-induced increase and insulin-induced increase in OAT3 function were blocked by PKB inhibitor AKTi1/2. To further investigate the involvement of SUMOylation, we treated OAT3-expressing cells with insulin in presence or absence of H89 or AKTi1/2 followed by examining OAT3 SUMOylation. We showed that insulin enhanced OAT3 SUMOylation, and such enhancement was abrogated by H89 and AKTi1/2. Lastly, insulin increased OAT3 function and SUMOylation in rat kidney slice. In conclusion, our investigations demonstrated that insulin regulated OAT3 function, expression, and SUMOylation through PKA/PKB signaling pathway. Graphical abstract.


Insulin, Regular, Human/pharmacology , Organic Anion Transporters, Sodium-Independent/metabolism , Animals , COS Cells , Chlorocebus aethiops , Cyclic AMP-Dependent Protein Kinases/antagonists & inhibitors , Cyclic AMP-Dependent Protein Kinases/metabolism , Diabetes Mellitus, Type 2/drug therapy , Estrone/analogs & derivatives , Estrone/metabolism , Humans , Insulin, Regular, Human/therapeutic use , Isoquinolines , Kidney/drug effects , Kidney/metabolism , Models, Animal , Protein Kinase Inhibitors/pharmacology , Proto-Oncogene Proteins c-akt/metabolism , Rats , Recombinant Proteins/pharmacology , Recombinant Proteins/therapeutic use , Signal Transduction/drug effects , Sulfonamides , Sumoylation/drug effects
9.
Pharmaceutics ; 13(3)2021 Feb 28.
Article En | MEDLINE | ID: mdl-33670955

Organic anion transporter 3 (OAT3) is mainly expressed at the basolateral membrane of kidney proximal tubules, and is involved in the renal elimination of various kinds of important drugs, potentially affecting drug efficacy or toxicity. Our laboratory previously reported that ubiquitin modification of OAT3 triggers the endocytosis of OAT3 from the plasma membrane to intracellular endosomes, followed by degradation. Oral anticancer drugs ixazomib, oprozomib, and delanzomib, as proteasomal inhibitors, target the ubiquitin-proteasome system in clinics. Therefore, this study investigated the effects of ixazomib, oprozomib, and delanzomib on the expression and transport activity of OAT3 and elucidated the underlying mechanisms. We showed that all three drugs significantly increased the accumulation of ubiquitinated OAT3, which was consistent with decreased intracellular 20S proteasomal activity; stimulated OAT3-mediated transport of estrone sulfate and p-aminohippuric acid; and increased OAT3 surface expression. The enhanced transport activity and OAT3 expression following drug treatment resulted from an increase in maximum transport velocity of OAT3 without altering the substrate binding affinity, and from a decreased OAT3 degradation. Together, our study discovered a novel role of anticancer agents ixazomib, oprozomib, and delanzomib in upregulating OAT3 function, unveiled the proteasome as a promising target for OAT3 regulation, and provided implication of OAT3-mediated drug-drug interactions, which should be warned against during combination therapies with proteasome inhibitor drugs.

10.
Pharmacol Ther ; 217: 107647, 2021 01.
Article En | MEDLINE | ID: mdl-32758646

The members of the organic anion transporter (OAT) family are mainly expressed in kidney, liver, placenta, intestine, and brain. These transporters play important roles in the disposition of clinical drugs, pesticides, signaling molecules, heavy metal conjugates, components of phytomedicines, and toxins, and therefore critical for maintaining systemic homeostasis. Alterations in the expression and function of OATs contribute to the intra- and inter-individual variability of the therapeutic efficacy and the toxicity of many drugs, and to many pathophysiological conditions. Consequently, the activity of these transporters must be highly regulated to carry out their normal functions. This review will present an update on the recent advance in understanding the cellular and molecular mechanisms underlying the regulation of renal OATs, emphasizing on the post-translational modification (PTM), the crosstalk among these PTMs, and the remote sensing and signaling network of OATs. Such knowledge will provide significant insights into the roles of these transporters in health and disease.


Kidney/metabolism , Organic Anion Transporters/metabolism , ATP-Binding Cassette Transporters/metabolism , Acute Kidney Injury/metabolism , Acute Kidney Injury/pathology , Animals , Biological Transport , Drug Elimination Routes , Drug Interactions/physiology , Glycosylation , Humans , Kidney Diseases/metabolism , Kidney Diseases/pathology , Multidrug Resistance-Associated Proteins/metabolism , Organic Anion Transporters/genetics , Organic Cation Transport Proteins/metabolism , Phosphorylation/physiology , Polymorphism, Genetic , Proteasome Endopeptidase Complex/metabolism , Ubiquitin/metabolism
11.
Biochim Biophys Acta Gen Subj ; 1864(12): 129701, 2020 12.
Article En | MEDLINE | ID: mdl-32818533

Background Organic anion transporter 1 (OAT1) plays a vital role in avoiding the potential toxicity of various anionic drugs through the involvement of kidney elimination. We previously demonstrated that ubiquitin conjugation to OAT1 led to OAT1 internalization from cell surface, followed by degradation. Ubiquitination is a dynamic process, where deubiquitination is catalyzed by a class of ubiquitin-specific peptidases. Methods The role of ubiquitin-specific peptidase 8 (USP8) in hOAT1 function, expression and ubiquitination was assessed by conducting transporter uptake assay, biotinylation assay and ubiquitination assay. Results We demonstrated that USP8 overexpression in hOAT1-expressing cells led to an increased hOAT1 transporter activity and expression, which correlated well with a reduced hOAT1 ubiquitination. Such phenomenon was not observed in inactive USP8 mutant-transfected cells. In addition, the knockdown of endogenous USP8 by USP8-specific siRNA resulted in an increased hOAT1 ubiquitination, which correlated well with a decrease in hOAT1 expression and transport activity. Biotinylation experiments demonstrated that USP8-induced increase in hOAT1 expression and transport activity occurred through a deceleration of the rates of hOAT1 internalization and degradation. Conclusions These results indicated the regulatory role of USP8 in OAT1 function, expression, trafficking, and stability. General significance USP8 could be a new target for modulating OAT1-mediated drug transport.


Endopeptidases/metabolism , Endosomal Sorting Complexes Required for Transport/metabolism , Organic Anion Transport Protein 1/metabolism , Ubiquitin Thiolesterase/metabolism , Animals , COS Cells , Chlorocebus aethiops , Humans , Protein Stability , Protein Transport , Ubiquitination
12.
Mol Pharmacol ; 97(6): 384-391, 2020 06.
Article En | MEDLINE | ID: mdl-32234809

Organic anion transporter 1 (OAT1), expressed at the basolateral membrane of renal proximal tubule epithelial cells, mediates the renal excretion of many clinically important drugs. Previous study in our laboratory demonstrated that ubiquitin conjugation to OAT1 leads to OAT1 internalization from the cell surface and subsequent degradation. The current study showed that the ubiquitinated OAT1 accumulated in the presence of the proteasomal inhibitors MG132 and ALLN rather than the lysosomal inhibitors leupeptin and pepstatin A, suggesting that ubiquitinated OAT1 degrades through proteasomes. Anticancer drugs bortezomib and carfilzomib target the ubiquitin-proteasome pathway. We therefore investigate the roles of bortezomib and carfilzomib in reversing the ubiquitination-induced downregulation of OAT1 expression and transport activity. We showed that bortezomib and carfilzomib extremely increased the ubiquitinated OAT1, which correlated well with an enhanced OAT1-mediated transport of p-aminohippuric acid and an enhanced OAT1 surface expression. The augmented OAT1 expression and transport activity after the treatment with bortezomib and carfilzomib resulted from a reduced rate of OAT1 degradation. Consistent with this, we found decreased 20S proteasomal activity in cells that were exposed to bortezomib and carfilzomib. In conclusion, this study identified the pathway in which ubiquitinated OAT1 degrades and unveiled a novel role of anticancer drugs bortezomib and carfilzomib in their regulation of OAT1 expression and transport activity. SIGNIFICANCE STATEMENT: Bortezomib and carfilzomib are two Food and Drug Administration-approved anticancer drugs, and proteasome is the drug target. In this study, we unveiled a new role of bortezomib and carfilzomib in enhancing OAT1 expression and transport activity by preventing the degradation of ubiquitinated OAT1 in proteasomes. This finding provides a new strategy in regulating OAT1 function that can be used to accelerate the clearance of drugs, metabolites, or toxins and reverse the decreased expression under disease conditions.


Antineoplastic Agents/pharmacology , Biological Transport, Active/drug effects , Bortezomib/pharmacology , Oligopeptides/pharmacology , Organic Anion Transport Protein 1/metabolism , Proteasome Endopeptidase Complex/metabolism , Proteasome Inhibitors/pharmacology , HEK293 Cells , Humans , Leupeptins/pharmacology , Proteolysis , Ubiquitination , p-Aminohippuric Acid/metabolism
13.
Acta Pharm Sin B ; 10(1): 186-194, 2020 Jan.
Article En | MEDLINE | ID: mdl-31993315

Organic anion transporter 3 (OAT3) plays a vital role in removing a broad variety of anionic drugs from kidney, thus avoiding their possible toxicity in the body. In the current study, we investigated the role of insulin-like growth factor 1 (IGF-1) in the regulation of OAT3. We showed that IGF-1 induced a dose- and time-dependent increase in OAT3 transport activity, which correlated well with an increase in OAT3 expression. The IGF-1-induced increase in OAT3 expression was blocked by protein kinase A (PKA) inhibitor H89. Moreover, IGF-1 induced an increase in OAT3 phosphorylation, which was also blocked by H89. These data suggest that the IGF-1 modulation of OAT3 occurred through PKA signaling pathway. To further confirm the involvement of PKA, we treated OAT3-expressing cells with PKA activator Bt2-cAMP, followed by examining OAT activity and phosphorylation. We showed that OAT3 activity and phosphorylation were much enhanced in Bt2-cAMP-treated cells as compared to that in control cells. Finally, linsitinib, an anticancer drug that blocks the IGF-1 receptor, abrogated IGF-1-stimulated OAT3 transport activity. In conclusion, our study demonstrated that IGF-1 regulates OAT3 expression and transport activity through PKA signaling pathway, possibly by phosphorylating the transporter.

14.
Nanotechnology ; 31(8): 085201, 2019 Oct 28.
Article En | MEDLINE | ID: mdl-31658446

Top-emitting microcavity polymer light-emitting diodes (TMPLEDs) are of great significance for active matrix PLED displays with high color purity. However, the complex device structures of highly efficient microcavity organic light-emitting diodes fabricated by the full vapor deposition technology are not suitable for solution-processed PLEDs. Solution-processed TMPLEDs with simple device structures are promising candidates for large-area, mass production display techniques. In this work, three strategies were used to apply microcavity into PLEDs: (1) double Ag electrodes performed as the mirrors of cavity, instead of a multi-layer Bragg reflector, which simplified the device structure and fabrication process; (2) three solution-processed functional layers were specially designed for avoiding the inter-infiltration between the different solutions and to improve the interface contacts; (3) high order microcavities were utilized according to the optical simulation results, in which thick EMLs benefited from thickness control and reproductivity. As a result, the full-color emission including pure red, green, blue was realized, and quasi-white light was also achieved from a single polymer emitting material. The achievement of color purity always requires the sacrifice of part of the current efficiency due to the spectra narrowing, while the higher current efficiency of green TMPLED (10.08 cd A-1) compared to that of non-cavity PLED (~8.60 cd A-1) cast a light on future improvements.

15.
ChemSusChem ; 12(21): 4824-4831, 2019 Nov 08.
Article En | MEDLINE | ID: mdl-31496072

Interface engineering of TiO2 nanoparticles (NPs)-based perovskite solar cells (PVSCs) is often necessary to facilitate the extraction and transport of charge carriers. In this work, poly[{9,9-bis[3'-(N,N-dimethyl)propyl]-2,7-fluorene}-alt-2,7-(9,9-dioctylfluorene)] (PFN) and polystyrene (PS) are demonstrated to be effective surface modifiers of the TiO2 NPs electron-transporting layer in n-i-p PVSCs. The low-cost insulating polymer PS performs better than the PFN conjugated polymer owing to its high film quality, low surface energy and insulating characteristics. A peak power conversion efficiency (PCE) of 15.09 % with an open-circuit voltage (VOC ) of 1.05 V and a PCE of 17.13 % with an ultrahigh VOC of 1.18 V is achieved with TiO2 NPs/PS-based PVSCs using poly[2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylenevinylene] (MEH-PPV) and spiro-OMeTAD, respectively, as the hole-transporting material.

16.
Biochim Biophys Acta Biomembr ; 1861(7): 1293-1301, 2019 07 01.
Article En | MEDLINE | ID: mdl-31054272

Organic anion transporter 3 (OAT3) plays a vital role in removing a broad array of anionic drugs from kidney, thereby avoiding their possibly toxic side effects in the body. We earlier demonstrated that OAT3 is subjected to a specific type of post-translational modification called SUMOylation. SUMOylation is a dynamic event, where de-SUMOylation is catalyzed by a class of SUMO-specific proteases. In the present investigation, we assessed the role of SUMO-specific protease Senp2 in OAT3 SUMOylation, expression and function. We report here that overexpression of Senp2 in COS-7 cells led to a reduced OAT3 SUMOylation, which correlated well with a decreased OAT3 expression and transport activity. Such phenomenon was not observed in cells overexpressing an inactive mutant of Senp2. Furthermore, transfection of cells with Senp2-specific siRNA to knockdown the endogenous Senp2 resulted in an increased OAT3 SUMOylation, which correlated well with an enhanced OAT3 expression and transport activity. Coimmunoprecipitation experiments showed that Senp2 directly interacted with OAT3 in the kidneys of rats. Together these results provided first demonstration that Senp2 is a significant regulator for OAT3-mediated organic anion/drug transport.


Cysteine Endopeptidases/physiology , Organic Anion Transporters, Sodium-Independent/metabolism , Sumoylation/physiology , Animals , COS Cells , Cells, Cultured , Chlorocebus aethiops , Cysteine Endopeptidases/genetics , Humans , Kidney/cytology , Kidney/metabolism , Male , Organic Anion Transporters, Sodium-Independent/physiology , RNA, Small Interfering , Rats, Sprague-Dawley
17.
J Oncol ; 2019: 1951786, 2019.
Article En | MEDLINE | ID: mdl-30941173

Human organic anion transporter 4 (hOAT4) belongs to a family of multispecific organic anion transporters that play critical roles in the disposition of numerous drugs and therefore are the major sites for drug-drug interaction. Drug-drug interactions contribute significantly to the individual variation in drug response. hOAT4 is expressed in the kidney and placenta. In the current study, we examined the interaction of 36 anticancer drugs with hOAT4 in kidney COS-7 cells and placenta BeWo cells. Among the drugs tested, only epirubicin hydrochloride and dabrafenib mesylate exhibited > 50% cis-inhibitory effect, in COS-7 cells, on hOAT4-mediated uptake of estrone sulfate, a prototypical substrate for the transporter. The IC50 values for epirubicin hydrochloride and dabrafenib mesylate were 5.24±0.95 µM and 8.30±3.30 µM, respectively. Dixon plot analysis revealed that inhibition by epirubicin hydrochloride was noncompetitive with a Ki = 3 µM whereas inhibition by dabrafenib mesylate was competitive with a Ki = 4.26 µM. Our results established that epirubicin hydrochloride and dabrafenib mesylate are inhibitors of hOAT4. Furthermore, by comparing our data with clinically relevant exposures of these drugs, we conclude that although the tendency for dabrafenib mesylate to cause drug-drug interaction through hOAT4 is insignificant in the kidney, the propensity for epirubicin hydrochloride to cause drug-drug interaction is high.

18.
AAPS J ; 21(2): 30, 2019 02 13.
Article En | MEDLINE | ID: mdl-30761470

Organic anion transporter 3 (OAT3) plays a vital role in removing a broad variety of anionic drugs from kidney, thus avoiding their possible toxicity in the body. We earlier established that activation of protein kinase C (PKC) enhances OAT3 ubiquitination, which promotes OAT3 internalization from the cell plasma membrane to intracellular endosomes and consequent degradation. As a result, OAT3 expression and transport activity are reduced. In the current study, we discovered that protein kinase A (PKA) had an opposite effect to PKC on the regulation of OAT3. We showed that activation of PKA by Bt2-cAMP stimulated OAT3 transport activity, which was largely caused by an enhanced plasma membrane expression of the transporter, kinetically reflected as an augmented maximal transport velocity Vmax without notable alteration in substrate-binding affinity Km. Additionally, we showed that PKA activation accelerated the rate of OAT3 recycling from intracellular compartments to the plasma membrane and decelerated the rate of OAT3 degradation. We further showed that OAT3 is subjected to post-translational modification by SUMO-2 and SUMO-3 not by SUMO-1. PKA activation enhanced OAT3 SUMOylation, which was accompanied by a reduced OAT3 ubiquitination. Finally, insulin-like growth factor 1 significantly stimulated OAT3 transport activity and SUMOylation through PKA signaling pathway. In conclusion, this is the first demonstration that PKA stimulated OAT3 expression and transport activity by altering the trafficking kinetics of OAT3 possibly through the crosstalk between SUMOylation and ubiquitination. Our studies are consistent with a remote sensing and signaling model for transporters (Wu et al. in Mol Pharmacol. 79(5):795-805, 2011).


Cyclic AMP-Dependent Protein Kinases/metabolism , Organic Anion Transporters, Sodium-Independent/metabolism , Small Ubiquitin-Related Modifier Proteins/metabolism , Ubiquitins/metabolism , Animals , COS Cells , Chlorocebus aethiops , Insulin-Like Growth Factor I/metabolism , SUMO-1 Protein/metabolism , Sumoylation , Transfection , Ubiquitin-Conjugating Enzymes/metabolism
19.
ChemSusChem ; 12(6): 1155-1161, 2019 Mar 21.
Article En | MEDLINE | ID: mdl-30633449

Perylene diimide-based small molecules are widely used as intermediates of liquid crystals, owing to their high planarity and electron mobility. In this study, tetrachloroperylene diimide (TCl-PDI) was used as a small-molecule replacement for TiO2 as electron-transporting material (ETM) for planar perovskite solar cells (PVSCs). Among hole-transporting materials (HTMs) for PVSCs, poly(3-hexylthiophene) (P3HT) gives the devices the highest stability and reproducibility. Therefore, PVSCs with the structure of indium tin oxide (ITO)/ETM/perovskite/P3HT/MoO3 /Ag were used to evaluate the performances of new ETMs. A reference device with compact TiO2 and P3HT gave a reasonable power conversion efficiency (PCE) of 12.78 %, whereas the PVSC with TCl-PDI as ETM gave an enhanced PCE of 14.73 %, which is among the highest reported values for PVSCs with undoped P3HT as the HTM. Moreover, TCl-PDI-based devices displayed higher stability than those based on compact TiO2 , owing to the superior perovskite quality.

20.
Int J Pharm ; 555: 165-174, 2019 Jan 30.
Article En | MEDLINE | ID: mdl-30453017

Human organic anion transporter 4 (hOAT4) belongs to a class of organic anion transporters that exert critical function in the secretion, absorption, and distribution of numerous drugs in the body, such as anti-viral drugs, anti-cancer therapeutics, antibiotics, antihypertensive medicine, and anti-inflammatory drugs. hOAT4 is richly existent in the kidney and placenta. We previously established that serum- and glucocorticoid-inducible kinases (sgk) stimulate hOAT4 expression and transport activity by abrogating the inhibitory effect of a ubiquitin ligase Nedd4-2. Insulin is one of the upstream signaling molecules for sgk. We therefore investigated the effect of insulin on hOAT4 function. We showed that insulin stimulated hOAT4 expression and transport activity, and the action of insulin was abolished in cells overexpressing Nedd4-2-specific siRNA to knockdown the endogenous Nedd4-2. We further showed that insulin phosphorylated serine 327 on Nedd4-2 and weakened the interaction between hOAT4 and Nedd4-2. Interestingly, in cells overexpressing sgk2, the stimulatory effect of insulin on hOAT4 was diminished. In addition, the stimulatory effect of insulin on hOAT4 was blocked by wortmannin and buparlisib, two PI3K inhibitors. In conclusion, our study demonstrated that insulin stimulates hOAT4 expression and transport activity by abrogating the inhibition effect of Nedd4-2 on the transporter. Moreover, insulin regulates hOAT4 by competing with sgk2 rather than through sgk2.


Insulin/pharmacology , Nedd4 Ubiquitin Protein Ligases/genetics , Organic Anion Transporters, Sodium-Independent/metabolism , Aminopyridines/pharmacology , Animals , COS Cells , Chlorocebus aethiops , Gene Knockdown Techniques , Humans , Immediate-Early Proteins/genetics , Morpholines/pharmacology , Phosphoinositide-3 Kinase Inhibitors , Protein Serine-Threonine Kinases/genetics , RNA, Small Interfering/administration & dosage , Wortmannin/pharmacology
...