Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cell Rep ; 38(7): 110375, 2022 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-35172155

RESUMEN

Branching morphogenesis is a fundamental process by which organs in invertebrates and vertebrates form branches to expand their surface areas. The current dogma holds that directional cell migration determines where a new branch forms and thus patterns branching. Here, we asked whether mouse Lgl1, a homolog of the Drosophila tumor suppressor Lgl, regulates epithelial polarity in the mammary gland. Surprisingly, mammary glands lacking Lgl1 have normal epithelial polarity, but they form fewer branches. Moreover, we find that Lgl1 null epithelium is unable to directionally migrate, suggesting that migration is not essential for mammary epithelial branching as expected. We show that LGL1 binds to Integrin ß1 and inhibits its downstream signaling, and Integrin ß1 overexpression blocks epithelial migration, thus recapitulating the Lgl1 null phenotype. Altogether, we demonstrate that Lgl1 modulation of Integrin ß1 signaling is essential for directional migration and that epithelial branching in invertebrates and the mammary gland is fundamentally distinct.


Asunto(s)
Epitelio , Glicoproteínas , Integrina beta1 , Glándulas Mamarias Animales , Morfogénesis , Transducción de Señal , Animales , Movimiento Celular/genética , Polaridad Celular , Proliferación Celular , Regulación hacia Abajo , Células Epiteliales/metabolismo , Epitelio/crecimiento & desarrollo , Femenino , Regulación Neoplásica de la Expresión Génica , Glicoproteínas/metabolismo , Integrina beta1/metabolismo , Glándulas Mamarias Animales/crecimiento & desarrollo , Glándulas Mamarias Animales/metabolismo , Ratones Transgénicos , Modelos Biológicos , Unión Proteica
2.
STAR Protoc ; 2(3): 100778, 2021 09 17.
Artículo en Inglés | MEDLINE | ID: mdl-34485944

RESUMEN

We recently established an in vitro culture system in which mammary gland organoid undergoes directional migration in response to an FGF10 concentration gradient. Here, we describe a step-by-step protocol for preparing organoids, the setup of the 3D culture system, and the image acquisition approach. The technical difficulties in conducting the 3D migration assay are choosing epithelial organoids of appropriate sizes and manually paring organoids and beads pre-soaked in FGF10 within a desirable distance (∼100 µm). For complete details on the use and execution of this protocol, please refer to Lu et al. (2020).


Asunto(s)
Técnicas de Cultivo Tridimensional de Células/métodos , Movimiento Celular/fisiología , Células Epiteliales , Glándulas Mamarias Animales , Organoides , Animales , Células Cultivadas , Células Epiteliales/citología , Células Epiteliales/fisiología , Epitelio/fisiología , Femenino , Glándulas Mamarias Animales/citología , Glándulas Mamarias Animales/fisiología , Ratones , Organoides/citología , Organoides/fisiología
3.
Cell Rep ; 33(2): 108246, 2020 10 13.
Artículo en Inglés | MEDLINE | ID: mdl-33053348

RESUMEN

Collective migration is essential for development, wound repair, and cancer metastasis. For most collective systems, "leader cells" determine both the direction and the power of the migration. It has remained unclear, however, how the highly polarized vertebrate epithelium migrates directionally during branching morphogenesis. We show here that, unlike in other systems, front-rear polarity of the mammary epithelium is set up by preferential cell proliferation in the front in response to the FGF10 gradient. This leads to frontal stratification, loss of apicobasal polarity, and leader cell formation. Leader cells are a dynamic population and move faster and more directionally toward the FGF10 signal than do follower cells, partly because of their intraepithelial protrusions toward the signal. Together, our data show that directional migration of the mammary epithelium is a unique multistep process and that, despite sharing remarkable cellular and molecular similarities, vertebrate and invertebrate epithelial branching are fundamentally distinct processes.


Asunto(s)
Movimiento Celular , Polaridad Celular , Epitelio/fisiología , Vertebrados/fisiología , Animales , Proliferación Celular , Extensiones de la Superficie Celular/metabolismo , Perros , Células Epiteliales/citología , Células Epiteliales/metabolismo , Femenino , Factor 10 de Crecimiento de Fibroblastos/metabolismo , Proteínas Fluorescentes Verdes/metabolismo , Células de Riñón Canino Madin Darby , Glándulas Mamarias Animales/crecimiento & desarrollo , Ratones , Organoides/metabolismo , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA