Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Acta Pharmacol Sin ; 2024 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-39060522

RESUMEN

Delta like non-canonical Notch ligand 1 (DLK1), as a member of epidermal growth factor-like family, plays a critical role in somatic growth, tissue development and possibly tissue renewal. Though previous studies had indicated that DLK1 contributed to adipogenesis and myogenesis, it's still controversial whether DLK1 affects angiogenesis and how it interacts with Notch signaling with numerous conflicting reports from different models. Based on our preliminary finding that DLK1 expression was up-regulated in mice ischemic gastrocnemius and in the border zone of infarcted myocardium, we administered either recombinant DLK1 (rDLK1) or PBS in C57BL/6 mice after establishment of hindlimb ischemia (HLI) and myocardial infarction (MI), respectively. Exogenous rDLK1 administration significantly improved both blood perfusion of mice ischemic hindlimbs and muscle motor function on the 3rd, 7th day after HLI, by promoting neovascularization. Similar effect on neovascularization was verified in mice on the 28th day after MI as well as improvement of cardiac failure. Correspondingly, the number of CD34+KDR+ cells, indicated as endothelial progenitor cells (EPCs), was significantly in mice ischemic gastrocnemius by rDLK1 administration, which was abrogated by DAPT as the specific inhibitor of Notch intracellular domain (NICD). Furthermore, bone marrow mononuclear cells were obtained from C57BL/6 mice and differentiated to EPCs ex vivo. Incubation with rDLK1 triggered Notch1 mRNA and NICD protein expressions in EPCs as exposed to hypoxia and serum deprivation, promoting EPCs proliferation, migration, anti-apoptosis and tube formation. Otherwise, rDLK1 incubation significantly decreased intracellular and mitochondrial reactive oxygen species, increased ATP content and mitochondrial membrane potential, downregulated short isoform of OPA-1 expression whereas upregulated mitofusin (-1, -2) expression in EPCs by Notch1 signaling, which were all abrogated by DAPT. In summary, the present study unveils the pro-angiogenesis and its mechanism of rDLK1 through activation of Notch1 signaling in endothelial progenitor cells.

2.
Acta Pharmacol Sin ; 40(2): 192-198, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-29777203

RESUMEN

Abdominal aortic aneurysms (AAAs) are a chronic vascular disease characterized by pathological luminal dilation. Aortic rupture is the fatal consequence of AAAs. Ginkgo biloba extracts (GBEs), a natural herb extract widely used as food supplements, drugs, and cosmetics, has been reported to suppress development of calcium chloride-induced AAAs in mice. Calcium chloride-induced AAAs do not rupture, while angiotensin II (AngII)-induced AAAs in mice have high rate of aortic rupture, implicating potentially different mechanisms from calcium chloride-induced AAAs. This study aimed to determine whether GBE would improve aortic dilation and rupture rate of AngII-induced AAAs. Male apolipoprotein E (apoE) -/- mice were infused with AngII and administered either GBE or its major active ingredients, flavonoids and ginkgolides, individually or in combination. To determine the effects of GBE in mice with established AAAs, male apoE-/- mice were firstly infused with AngII for 28 days to develop AAAs, and then administered either GBE or vehicle in mice with established AAAs, which were continuously infused with AngII for another 56 days. GBE, but not the two major active components separately or synergistically, prevented aortic rupture, but not aortic dilation. The protection of GBE from aortic rupture was independent of systolic blood pressure, lipid, and inflammation. GBE also did not attenuate either aortic rupture or progressive aortic dilation in mice with established AAAs. GBE did not reduce the atherosclerotic lesion areas, either. In conclusion, GBE prevents aortic rupture in AngII-infused hypercholesterolemic mice, but only in the early phase of the disease development.


Asunto(s)
Aneurisma de la Aorta Abdominal/prevención & control , Rotura de la Aorta/prevención & control , Ginkgo biloba/química , Extractos Vegetales/uso terapéutico , Angiotensina II , Animales , Aneurisma de la Aorta Abdominal/inducido químicamente , Rotura de la Aorta/inducido químicamente , Apolipoproteínas E/genética , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA