Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 120
1.
Article En | MEDLINE | ID: mdl-38833387

In the development of ultrasound localization microscopy (ULM) methods, appropriate test beds are needed to facilitate algorithmic performance calibration. Here, we present the design of a new ULM-compatible microvascular phantom with a forked, V-shaped wall-less flow channel pair (250 µm channel width) that bifurcated at a separation rate of 50 µm/mm. The lumen core was fabricated using additive manufacturing, and it was molded within a polyvinyl alcohol (PVA) tissue mimicking slab using the lost-core casting method. Measured using optical microscopy, the lumen core's flow channel width was found to be 252±15 µm with a regression-derived flow channel separation gradient of 50.89 µm/mm. The new phantom's applicability in ULM performance analysis was demonstrated by feeding microbubble contrast flow (1.67 to 167 µl/s flow rates) through the phantom's inlet and generating ULM images with a previously reported method. Results showed that, with longer acquisition times (10 s or longer), ULM image quality was expectedly improved, and the variance of ULM-derived flow channel measurements was reduced. Also, at axial depths near the lumen's bifurcation point, the current ULM algorithm showed difficulty in properly discerning between the two flow channels because of the narrow channel-to-channel separation distance. Overall, the new phantom serves well as a calibration tool to test the performance of ULM methods in resolving small vasculature.

2.
bioRxiv ; 2024 Jun 14.
Article En | MEDLINE | ID: mdl-38915631

During development, microglia prune excess synapses to refine neuronal circuits. In neurodegeneration, the role of microglia-mediated synaptic pruning in circuit remodeling and dysfunction is important for developing therapies aimed at modulating microglial function. Here we analyzed the role of microglia in the synapse disassembly of degenerating postsynaptic neurons in the inner retina. After inducing transient intraocular pressure elevation to injure retinal ganglion cells, microglia increase in number, shift to ameboid morphology, and exhibit greater process movement. Furthermore, due to the greater number of microglia, there is increased colocalization of microglia with synaptic components throughout the inner plexiform layer and with excitatory synaptic sites along individual ganglion cell dendrites. Microglia depletion partially restores ganglion cell function, suggesting that microglia activation may be neurotoxic in early neurodegeneration. Our results demonstrate the important role of microglia in synapse disassembly in degenerating circuits, highlighting their recruitment to synaptic sites early after neuronal injury. Highlights: Early after transient intraocular pressure elevation: Microglia increase in number, complexity, and process movementMicroglia-synaptic contacts increase in the inner plexiform layerMicroglia-synaptic contacts increase on retinal ganglion cell dendritesMicroglia depletion partially restores ganglion cell function.

3.
Invest Ophthalmol Vis Sci ; 65(5): 15, 2024 May 01.
Article En | MEDLINE | ID: mdl-38717426

Purpose: Mutations in the genes encoding type IV collagen alpha 1 (COL4A1) and alpha 2 (COL4A2) cause a multisystem disorder that includes ocular anterior segment dysgenesis (ASD) and glaucoma. We previously showed that transforming growth factor beta (TGFß) signaling was elevated in developing anterior segments from Col4a1 mutant mice and that reducing TGFß signaling ameliorated ASD, supporting a role for the TGFß pathway in disease pathogenesis. Here, we tested whether altered TGFß signaling also contributes to glaucoma-related phenotypes in Col4a1 mutant mice. Methods: To test the role of TGFß signaling in glaucoma-relevant phenotypes, we genetically reduced TGFß signaling using mice with mutated Tgfbr2, which encodes the common receptor for all TGFß ligands in Col4a1+/G1344D mice. We performed slit-lamp biomicroscopy and optical coherence tomography for qualitative and quantitative analyses of anterior and posterior ocular segments, histological analyses of ocular tissues and optic nerves, and intraocular pressure assessments using rebound tonometry. Results: Col4a1+/G1344D mice showed defects of the ocular drainage structures, including iridocorneal adhesions, and phenotypes consistent with glaucomatous neurodegeneration, including thinning of the nerve fiber layer, retinal ganglion cell loss, optic nerve head excavation, and optic nerve degeneration. We found that reducing TGFß receptor 2 (TGFBR2) was protective for ASD, ameliorated ocular drainage structure defects, and protected against glaucomatous neurodegeneration in Col4a1+/G1344D mice. Conclusions: Our results suggest that elevated TGFß signaling contributes to glaucomatous neurodegeneration in Col4a1 mutant mice.


Collagen Type IV , Glaucoma , Receptor, Transforming Growth Factor-beta Type II , Signal Transduction , Transforming Growth Factor beta , Animals , Mice , Anterior Eye Segment/metabolism , Anterior Eye Segment/pathology , Collagen Type IV/metabolism , Collagen Type IV/genetics , Disease Models, Animal , Glaucoma/metabolism , Glaucoma/genetics , Glaucoma/pathology , Intraocular Pressure/physiology , Mice, Inbred C57BL , Mutation , Optic Nerve/pathology , Optic Nerve/metabolism , Optic Nerve Diseases/metabolism , Optic Nerve Diseases/genetics , Phenotype , Receptor, Transforming Growth Factor-beta Type II/genetics , Receptor, Transforming Growth Factor-beta Type II/metabolism , Retinal Ganglion Cells/pathology , Retinal Ganglion Cells/metabolism , Signal Transduction/physiology , Slit Lamp Microscopy , Tomography, Optical Coherence , Tonometry, Ocular , Transforming Growth Factor beta/metabolism
4.
Article En | MEDLINE | ID: mdl-38813612

Blood volume shifts during postural adjustment leads to irregular distension of the internal jugular vein (IJV). In microgravity, distension may contribute to flow stasis and thromboembolism, though the regional implications and associated risk remain unexplored. We characterized regional differences in IJV volume distension and flow complexity during progressive head-down tilt (HDT) (0°, -6°, -15°, -30°) using conventional ultrasound and vector flow imaging. We also evaluated low-pressure thigh cuffs (40 mmHg) as a fluid shifting countermeasure during -6° HDT. Total IJV volume expanded 139±95% from supine (4.6±2.7 mL) to -30° HDT (10.3±5.0 mL). Blood flow profiles had greater vector uniformity at the cranial IJV region (P<0.01) and became more dispersed with increasing tilt (P<0.01). Qualitatively, flow was more uniform throughout the IJV during its early flow cycle phase, and more disorganized during late flow phase. This disorganized flow was accentuated closer to the vessel wall, near the caudal region, and during greater HDT. Low-pressure thigh cuffs during -6° HDT decreased IJV volume at the cranial region (-12±15%; P<0.01) but not the caudal region (P=0.20), although flow uniformity was unchanged (both regions,P>0.25). We describe a distensible IJV accommodating large volume shifts along its length. Prominent flow dispersion was primarily found at the caudal region, suggesting multi-directional blood flow. Thigh cuffs appear effective for decreasing IJV volume but effects on flow complexity are minor. Flow complexity along the vessel length is likely related to IJV distension during chronic volume shifting and may be a precipitating factor for flow stasis and future thromboembolism risk.

5.
Article En | MEDLINE | ID: mdl-38687663

Speed-of-sound (SoS) is an intrinsic acoustic property of human tissues and has been regarded as a potential biomarker of tissue health. To foster the clinical use of this emerging biomarker in medical diagnostics, it is important for SoS estimates to be derived and displayed in real time. Here, we demonstrate that concurrent global SoS estimation and B-mode imaging can be achieved live on a portable ultrasound scanner. Our innovation is hinged upon the design of a novel pulse-echo SoS estimation framework that is based on steered plane wave imaging. It has accounted for the effects of refraction and imaging depth when the medium SoS differs from the nominal value of 1540 m/s that is conventionally used in medical imaging. The accuracy of our SoS estimation framework was comparatively analyzed with through-transmit time-of-flight measurements in vitro on 15 custom agar phantoms with different SoS values (1508-1682 m/s) and in vivo on human calf muscles ( N = 9 ; SoS range: 1560-1586 m/s). Our SoS estimation framework has a mean signed difference (MSD) of - 0.6 ± 2.3 m/s in vitro and - 2.2 ± 11.2 m/s in vivo relative to the reference measurements. In addition, our real-time system prototype has yielded simultaneous SoS estimates and B-mode imaging at an average frame rate of 18.1 fps. Overall, by realizing real-time tissue SoS estimation with B-mode imaging, our innovation can foster the use of tissue SoS as a biomarker in medical ultrasound diagnostics.


Phantoms, Imaging , Ultrasonography , Humans , Ultrasonography/methods , Muscle, Skeletal/diagnostic imaging , Image Processing, Computer-Assisted/methods , Algorithms
6.
Article En | MEDLINE | ID: mdl-38564354

For high-frame-rate ultrasound imaging, it remains challenging to implement on compact systems as a sparse imaging configuration with limited array channels. One key issue is that the resulting image quality is known to be mediocre not only because unfocused plane-wave excitations are used but also because grating lobes would emerge in sparse-array configurations. In this article, we present the design and use of a new channel recovery framework to infer full-array plane-wave channel datasets for periodically sparse arrays that operate with as few as one-quarter of the full-array aperture. This framework is based on a branched encoder-decoder convolutional neural network (CNN) architecture, which was trained using full-array plane-wave channel data collected from human carotid arteries (59 864 training acquisitions; 5-MHz imaging frequency; 20-MHz sampling rate; plane-wave steering angles between -15° and 15° in 1° increments). Three branched encoder-decoder CNNs were separately trained to recover missing channels after differing degrees of channelwise downsampling (2, 3, and 4 times). The framework's performance was tested on full-array and downsampled plane-wave channel data acquired from an in vitro point target, human carotid arteries, and human brachioradialis muscle. Results show that when inferred full-array plane-wave channel data were used for beamforming, spatial aliasing artifacts in the B-mode images were suppressed for all degrees of channel downsampling. In addition, the image contrast was enhanced compared with B-mode images obtained from beamforming with downsampled channel data. When the recovery framework was implemented on an RTX-2080 GPU, the three investigated degrees of downsampling all achieved the same inference time of 4 ms. Overall, the proposed framework shows promise in enhancing the quality of high-frame-rate ultrasound images generated using a sparse-array imaging setup.


Carotid Arteries , Image Processing, Computer-Assisted , Neural Networks, Computer , Ultrasonography , Humans , Ultrasonography/methods , Image Processing, Computer-Assisted/methods , Carotid Arteries/diagnostic imaging , Algorithms
7.
Ultrason Sonochem ; 104: 106830, 2024 Mar.
Article En | MEDLINE | ID: mdl-38432151

The use of the subharmonic signal from microbubbles exposed to ultrasound is a promising safe and cost-effective approach for the non-invasive measurement of blood pressure. Achieving a high sensitivity of the subharmonic amplitude to the ambient overpressure is crucial for clinical applications. However, currently used microbubbles have a wide size distribution and diverse shell properties. This causes uncertainty in the response of the subharmonic amplitude to changes in ambient pressure, which limits the sensitivity. The aim of this study was to use monodisperse microbubbles to improve the sensitivity of subharmonic-based pressure measurements. With the same shell materials and gas core, we used a flow-focusing microfluidic chip and a mechanical agitation method to fabricate monodisperse (∼2.45-µm mean radius and 4.7 % polydisperse index) and polydisperse microbubbles (∼1.51-µm mean radius and 48.4 % polydisperse index), respectively. We varied the ultrasound parameters (i.e., the frequency, peak negative pressure (PNP) and pulse length), and found that there was an optimal excitation frequency (2.8 MHz) for achieving maximal subharmonic emission for monodisperse microbubbles, but not for polydisperse microbubbles. Three distinct regimes (occurrence, growth, and saturation) were identified in the response of the subharmonic amplitude to increasing PNP for both monodisperse and polydisperse microbubbles. For the polydisperse microbubbles, the subharmonic amplitude decreased either monotonically or non-monotonically with ambient overpressure, depending on the PNP. By contrast, for the monodisperse microbubbles, there was only a monotonic decrease at all PNPs. The maximum sensitivity (1.18 dB/kPa, R2 = 0.97) of the subharmonic amplitude to ambient overpressure for the monodisperse microbubbles was ∼6.5 times higher than that for the polydisperse microbubbles (0.18 dB/kPa, R2 = 0.88). These results show that monodisperse microbubbles can achieve a more consistent response of the subharmonic signal to changes in ambient overpressure and greatly improve the measurement sensitivity.

8.
Med Phys ; 51(1): 428-438, 2024 Jan.
Article En | MEDLINE | ID: mdl-37983613

BACKGROUND: Quantitative and comprehensive visualization of urinary flow dynamics in the urethra is crucial for investigating patient-specific mechanisms of lower urinary tract symptoms (LUTS). Although some methods can evaluate the global properties of the urethra, it is critical to assess the local information, such as the location of the responsible lesion and its interactions with urinary flow in relation to LUTS. This approach is vital for enhancing personalized and focal treatments. However, there is a lack of such diagnostic tools that can directly observe how the urethral shape and motion impact urinary flow in the urethra. PURPOSE: This study aimed to develop a novel transrectal ultrasound imaging modality based on the contrast-enhanced urodynamic vector projectile imaging (CE-UroVPI) framework and validate its clinical applicability for visualizing time-resolved flow dynamics in the urethra. METHODS: A new CE-UroVPI system was developed using a research-purpose ultrasound platform and a custom transrectal linear probe, and an imaging protocol for acquiring urodynamic echo data in male patients was designed. Thirty-four male patients with LUTS participated in this study. CE-UroVPI was performed to acquire ultrasound echo signals from the participant's urethra and urinary flow at various voiding phases (initiation, maintenance, and terminal). The ultrasound datasets were processed with custom software to visualize urinary flow dynamics and urethra tissue deformation. RESULTS: The transrectal CE-UroVPI system successfully visualized the time-resolved multidirectional urinary flow dynamics in the prostatic urethra during the initiation, maintenance, and terminal phases of voiding in 17 patients at a frame rate of 1250 fps. The maximum flow speed measured in this study was 2.5 m/s. In addition, when the urethra had an obstruction or an irregular partial deformation, the devised imaging modality visualized complex flow patterns, such as vortices and flow jets around the lesion. CONCLUSIONS: Our study findings demonstrate that the transrectal CE-UroVPI system developed in this study can effectively image fluid-structural interactions in the urethra. This new diagnostic technology has the potential to facilitate quantitative and precise assessments of urethral voiding functions and aid in the improvement of focal and effective treatments for patients with LUTS.


Prostate , Urethra , Humans , Male , Urethra/diagnostic imaging , Urethra/pathology , Pilot Projects , Ultrasonography , Prostate/diagnostic imaging , Treatment Outcome
9.
iScience ; 26(8): 107262, 2023 Aug 18.
Article En | MEDLINE | ID: mdl-37609630

In the nervous system, parallel circuits are organized in part by the lamina-specific compartmentalization of synaptic connections. In sensory systems such as mammalian retina, degenerating third-order neurons remodel their local presynaptic connectivity with second-order neurons. To determine whether there are sublamina-specific perturbations after injury of adult retinal ganglion cells, we comprehensively analyzed excitatory synapses across the inner plexiform layer (IPL) where bipolar cells connect to ganglion cells. Here, we show that pre- and postsynaptic component loss occurs throughout the IPL in a sublamina-dependent fashion after transient intraocular pressure elevation. Partnered synaptic components are lost as neurodegeneration progresses, while unpartnered synaptic components remain stable. Furthermore, presynaptic components are either lost first or simultaneously with the postsynaptic component. Our results demonstrate that this degenerating neural circuit exhibits differential vulnerability of excitatory synapses depending on IPL depth, highlighting the ordered disassembly of synapses that is specific to laminar compartments of the retina.

10.
Article En | MEDLINE | ID: mdl-37549086

Vector Doppler is well regarded as a potential way of deriving flow vectors to intuitively visualize complex flow profiles, especially when it is implemented at high frame rates. However, this technique's performance is known to suffer from aliasing artifacts. There is a dire need to devise real-time dealiasing solutions for vector Doppler. In this article, we present a new methodological framework for achieving aliasing-resistant flow vector estimation at real-time throughput from precalculated Doppler frequencies. Our framework comprises a series of compute kernels that have synergized: 1) an extended least squares vector Doppler (ELS-VD) algorithm; 2) single-instruction, multiple-thread (SIMT) processing principles; and 3) implementation on a graphical processing unit (GPU). Results show that this new framework, when executed on an RTX-2080 GPU, can effectively generate aliasing-free flow vector maps using high-frame-rate imaging datasets acquired from multiple transmit-receive angle pairs in a carotid phantom imaging scenario. Over the entire cardiac cycle, the frame processing time for aliasing-resistant vector estimation was measured to be less than 16 ms, which corresponds to a minimum processing throughput of 62.5 frames/s. In a human femoral bifurcation imaging trial with fast flow (150 cm/s), our framework was found to be effective in resolving two-cycle aliasing artifacts at a minimum throughput of 53 frames/s. The framework's processing throughput was generally in the real-time range for practical combinations of ELS-VD algorithmic parameters. Overall, this work represents the first demonstration of real-time, GPU-based aliasing-resistant vector flow imaging using vector Doppler estimation principles.


Ultrasonography, Doppler , Humans , Blood Flow Velocity , Ultrasonography, Doppler/methods , Ultrasonography/methods , Phantoms, Imaging , Least-Squares Analysis
11.
J Artif Organs ; 2023 Jul 20.
Article En | MEDLINE | ID: mdl-37474830

In veno-arterial extracorporeal membrane oxygenation (VA-ECMO) treatment, the mixing zone is a key hemodynamic factor that determines the efficacy of the treatment. This study aimed to evaluate the applicability of a novel ultrasound technique called vector flow imaging (VFI) for visualizing complex flow patterns in an aorta phantom under VA-ECMO settings. VFI experiments were performed to image aortic hemodynamics under VA-ECMO treatment simulated in an anthropomorphic thoracic aorta phantom using a pulsatile pump (cardiac output: 2.7 L/min) and an ECMO pump with two different flow rates, 0.35 L/min and 1.0 L/min. The cardiac cycle of hemodynamics in the ascending aorta, aortic arch, and descending aorta was visualized, and the spatio-temporal dynamics of flow vectors were analyzed. VFI successfully visualized dynamic flow patterns in the aorta phantom. When the flow rate of the ECMO pump increased, ECMO flow was more dominant than cardiac output in the diastole phase, and the speed of cardiac output was suppressed in the systole phase. Vortex flow patterns were also detected in the ascending aorta and the arch under both ECMO flow rate conditions. The VFI technique may provide new insights into aortic hemodynamics and facilitates effective and safe VA-ECMO treatment.

12.
Ultrasonics ; 134: 107050, 2023 Sep.
Article En | MEDLINE | ID: mdl-37300906

Vector flow imaging is a diagnostic ultrasound modality that is suited for the visualization of complex blood flow dynamics. One popular way of realizing vector flow imaging at high frame rates over 1000 fps is to apply multi-angle vector Doppler estimation principles in conjunction with plane wave pulse-echo sensing. However, this approach is susceptible to flow vector estimation errors attributed to Doppler aliasing, which is prone to arise when a low pulse repetition frequency (PRF) is inevitably used due to the need for finer velocity resolution or because of hardware constraints. Existing dealiasing solutions tailored for vector Doppler may have high computational demand that makes them unfeasible for practical applications. In this paper, we present the use of deep learning and graphical processing unit (GPU) computing principles to devise a fast vector Doppler estimation framework that is resilient against aliasing artifacts. Our new framework works by using a convolutional neural network (CNN) to detect aliased regions in vector Doppler images and subsequently applying an aliasing correction algorithm only at these affected regions. The framework's CNN was trained using 15,000 in vivo vector Doppler frames acquired from the femoral and carotid arteries, including healthy and diseased conditions. Results show that our framework can perform aliasing segmentation with an average precision of 90 % and can render aliasing-free vector flow maps with real-time processing throughputs (25-100 fps). Overall, our new framework can improve the visualization quality of vector Doppler imaging in real-time.


Deep Learning , Phantoms, Imaging , Blood Flow Velocity/physiology , Ultrasonography, Doppler/methods , Carotid Arteries/diagnostic imaging
13.
Biomater Sci ; 11(9): 3297-3307, 2023 May 02.
Article En | MEDLINE | ID: mdl-36943136

Small diameter synthetic vascular grafts have high failure rate due to the thrombosis and intimal hyperplasia formation. Compliance mismatch between the synthetic graft and native artery has been speculated to be one of the main causes of intimal hyperplasia. However, changing the compliance of synthetic materials without altering material chemistry remains a challenge. Here, we used poly(vinyl alcohol) (PVA) hydrogel as a graft material due to its biocompatibility and tunable mechanical properties to investigate the role of graft compliance in the development of intimal hyperplasia and in vivo patency. Two groups of PVA small diameter grafts with low compliance and high compliance were fabricated by dip casting method and implanted in a rabbit carotid artery end-to-side anastomosis model for 4 weeks. We demonstrated that the grafts with compliance that more closely matched with rabbit carotid artery had lower anastomotic intimal hyperplasia formation and higher graft patency compared to low compliance grafts. Overall, this study suggested that reducing the compliance mismatch between the native artery and vascular grafts is beneficial for reducing intimal hyperplasia formation.


Blood Vessel Prosthesis , Thrombosis , Animals , Rabbits , Hyperplasia , Compliance , Carotid Arteries/surgery
14.
Med Phys ; 50(3): 1699-1714, 2023 Mar.
Article En | MEDLINE | ID: mdl-36546560

BACKGROUND: Ultrasound vector flow imaging (VFI) shows potential as an emerging non-invasive modality for time-resolved flow mapping. However, its efficacy in tracking multidirectional pulsatile flow with temporal resolvability has not yet been systematically evaluated because of the lack of an appropriate test protocol. PURPOSE: We present the first systematic performance investigation of VFI in tracking pulsatile flow in a meticulously designed scenario with time-varying, omnidirectional flow fields (with flow angles from 0° to 360°). METHODS: Ultrasound VFI was performed on a three-loop spiral flow phantom (4 mm diameter; 5 mm pitch) that was configured to operate under pulsatile flow conditions (10 ml/s peak flow rate; 1 Hz pulse rate; carotid pulse shape). The spiral lumen geometry was designed to simulate recirculatory flow dynamics observed in the heart and in curvy blood vessel segments such as the carotid bulb. The imaging sequence was based on steered plane wave pulsing (-10°, 0°, +10° steering angles; 5 MHz imaging frequency; 3.3 kHz interleaved pulse repetition frequency). VFI's pulsatile flow estimation performance and its ability to detect secondary flow were comparatively assessed against flow fields derived from computational fluid dynamics (CFD) simulations that included consideration of fluid-structure interactions (FSI). The mean percentage error (MPE) and the coefficient of determination (R2 ) were computed to assess the correspondence of the velocity estimates derived from VFI and CFD-FSI simulations. In addition, VFI's efficacy in tracking pulse waves was analyzed with respect to pressure transducer measurements made at the phantom's inlet and outlet. RESULTS: Pulsatile flow patterns rendered by VFI agreed with the flow profiles computed from CFD-FSI simulations (average MPE: -5.3%). The shape of the VFI-measured velocity magnitude profile generally matched the inlet flow profile. High correlation exists between VFI measurements and simulated flow vectors (lateral velocity: R2  = 0.8; axial velocity R2  = 0.89; beam-flow angle: R2  = 0.98; p < 0.0001 for all three quantities). VFI was found to be capable of consistently tracking secondary flow. It also yielded pulse wave velocity (PWV) estimates (5.72 ± 1.02 m/s) that, on average, are within 6.4% of those obtained from pressure transducer measurements (6.11 ± 1.15 m/s). CONCLUSION: VFI can consistently track omnidirectional pulsatile flow on a time-resolved basis. This systematic investigation serves well as a quality assurance test of VFI.


Carotid Arteries , Pulse Wave Analysis , Pulsatile Flow , Ultrasonography/methods , Carotid Arteries/diagnostic imaging , Heart , Phantoms, Imaging , Blood Flow Velocity
15.
Article En | MEDLINE | ID: mdl-36343007

In atherosclerosis, low wall shear stress (WSS) is known to favor plaque development, while high WSS increases plaque rupture risk. To improve plaque diagnostics, WSS monitoring is crucial. Here, we propose wall shear imaging (WASHI), a noninvasive contrast-free framework that leverages high-frame-rate ultrasound (HiFRUS) to map the wall shear rate (WSR) that relates to WSS by the blood viscosity coefficient. Our method measures WSR as the tangential flow velocity gradient along the arterial wall from the flow vector field derived using a multi-angle vector Doppler technique. To improve the WSR estimation performance, WASHI semiautomatically tracks the wall position throughout the cardiac cycle. WASHI was first evaluated with an in vitro linear WSR gradient model; the estimated WSR was consistent with theoretical values (an average error of 4.6% ± 12.4 %). The framework was then tested on healthy and diseased carotid bifurcation models. In both scenarios, key spatiotemporal dynamics of WSR were noted: 1) oscillating shear patterns were present in the carotid bulb and downstream to the internal carotid artery (ICA) where retrograde flow occurs; and 2) high WSR was observed particularly in the diseased model where the measured WSR peaked at 810 [Formula: see text] due to flow jetting. We also showed that WASHI could consistently track arterial wall motion to map its WSR. Overall, WASHI enables high temporal resolution mapping of WSR that could facilitate investigations on causal effects between WSS and atherosclerosis.


Atherosclerosis , Plaque, Atherosclerotic , Humans , Ultrasonography/methods , Carotid Arteries/diagnostic imaging , Blood Viscosity , Stress, Mechanical , Blood Flow Velocity , Shear Strength , Models, Cardiovascular
16.
J Control Release ; 352: 385-398, 2022 12.
Article En | MEDLINE | ID: mdl-36273528

In sonoporation-based macromolecular delivery, repetitive microbubble cavitation in the bloodstream results in repeated sonoporation of cells or sonoporation of non-sonoporated neighboring cells (i.e., adjacent to the sonoporated host cells). The resealing and recovery capabilities of these two types of sonoporated cells affect the efficiency and biosafety of sonoporation-based delivery. Therefore, an improved understanding of the preservation of viability in these sonoporated cells is necessary. Using a customized platform for single-pulse ultrasound exposure (pulse length 13.33 µs, peak negative pressure 0.40 MPa, frequency 1.5 MHz) and real-time recording of membrane perforation and intracellular calcium fluctuations (using propidium iodide and Fluo-4 fluorescent probes, respectively), spatiotemporally controlled sonoporation was performed to administer first and second single-site sonoporations of a single cell or single-site sonoporation of a neighboring cell. Two distinct intracellular calcium changes, reversible and irreversible calcium fluctuations, were identified in cells undergoing repeat reversible sonoporation and in neighboring cells undergoing reversible sonoporation. In addition to an increased proportion of reversible calcium fluctuations that occurred with repeated sonoporation compared with that in the initial sonoporation, repeated sonoporation resulted in significantly shorter calcium fluctuation durations and faster membrane resealing than that produced by initial sonoporation. Similarly, compared with those in sonoporated host cells, the intracellular calcium fluctuation recovery and membrane perforation resealing times were significantly shorter in sonoporated neighboring cells. These results demonstrated that the function recovery and membrane resealing capabilities after a second sonoporation or sonoporation of neighboring cells were potentiated in the short term. This could aid in sustaining the long-term viability of sonoporated cells, therefore improving delivery efficiency and biosafety. This investigation provides new insight into the resealing and recovery capabilities in re-sonoporation of sonoporated cells and sonoporation of neighboring cells and can help develop safe and efficient strategies for sonoporation-based drug delivery.


Calcium , Sonication , Sonication/methods , Microbubbles , Cell Membrane/physiology , Drug Delivery Systems/methods , Cell Membrane Permeability/physiology
17.
Environ Sci Technol ; 56(17): 12055-12065, 2022 09 06.
Article En | MEDLINE | ID: mdl-35948027

The bromine atom (Br•) has been known to destroy ozone (O3) and accelerate the deposition of toxic mercury (Hg). However, its abundance and sources outside the polar regions are not well-known. Here, we report significant levels of molecular bromine (Br2)─a producer of Br•─observed at a coastal site in Hong Kong, with an average noontime mixing ratio of 5 ppt. Given the short lifetime of Br2 (∼1 min at noon), this finding reveals a large Br2 daytime source. On the basis of laboratory and field evidence, we show that the observed daytime Br2 is generated by the photodissociation of particulate nitrate (NO3-) and that the reactive uptake of dinitrogen pentoxide (N2O5) on aerosols is an important nighttime source. Model-calculated Br• concentrations are comparable with that of the OH radical─the primary oxidant in the troposphere, accounting for 24% of the oxidation of isoprene, a 13% increase in net O3 production, and a nearly 10-fold increase in the production rate of toxic HgII. Our findings reveal that reactive bromines play a larger role in the atmospheric chemistry and air quality of polluted coastal and maritime areas than previously thought. Our results also suggest that tightening the control of emissions of two conventional pollutants (NOx and SO2)─thereby decreasing the levels of nitrate and aerosol acidity─would alleviate halogen radical production and its adverse impact on air quality.


Air Pollutants , Mercury , Ozone , Aerosols , Air Pollutants/analysis , Atmosphere , Bromine/chemistry , Mercury/chemistry , Nitrates/analysis , Ozone/chemistry
18.
Article En | MEDLINE | ID: mdl-35786553

Spiral array transducers with a sparse 2-D aperture have demonstrated their potential in realizing 3-D ultrasound imaging with reduced data rates. Nevertheless, their feasibility in high-volume-rate imaging based on unfocused transmissions has yet to be established. From a metrology standpoint, it is essential to characterize the acoustic field of unfocused transmissions from spiral arrays not only to assess their safety but also to identify the root cause of imaging irregularities due to the array's sparse aperture. Here, we present a field profile analysis of unfocused transmissions from a density-tapered spiral array transducer (256 hexagonal elements, 220- [Formula: see text] element diameter, and 1-cm aperture diameter) through both simulations and hydrophone measurements. We investigated plane- and diverging-wave transmissions (five-cycle, 7.5-MHz pulses) from 0° to 10° steering for their beam intensity characteristics and wavefront arrival time profiles. Unfocused firings were also tested for B-mode imaging performance (ten compounded angles, -5° to 5° span). The array was found to produce unfocused transmissions with a peak negative pressure of 93.9 kPa at 2 cm depth. All transmissions steered up to 5° were free of secondary lobes within 12 dB of the main beam peak intensity. All wavefront arrival time profiles were found to closely match the expected profiles with maximum root-mean-squared errors of [Formula: see text] for plane wave (PW) and [Formula: see text] for diverging wave. The B-mode images showed good spatial resolution with a penetration depth of 22 mm in PW imaging. Overall, these results demonstrate that the density-tapered spiral array can facilitate unfocused transmissions below regulatory limits (mechanical index: 0.034; spatial-peak, pulse-average intensity: 0.298 W/cm2) and with suppressed secondary lobes while maintaining smooth wavefronts.


Acoustics , Transducers , Phantoms, Imaging , Ultrasonography/methods
19.
Article En | MEDLINE | ID: mdl-35862334

High-frame-rate ultrasound imaging uses unfocused transmissions to insonify an entire imaging view for each transmit event, thereby enabling frame rates over 1000 frames per second (fps). At these high frame rates, it is naturally challenging to realize real-time transfer of channel-domain raw data from the transducer to the system back end. Our work seeks to halve the total data transfer rate by uniformly decimating the receive channel count by 50% and, in turn, doubling the array pitch. We show that despite the reduced channel count and the inevitable use of a sparse array aperture, the resulting beamformed image quality can be maintained by designing a custom convolutional encoder-decoder neural network to infer the radio frequency (RF) data of the nullified channels. This deep learning framework was trained with in vivo human carotid data (5-MHz plane wave imaging, 128 channels, 31 steering angles over a 30° span, and 62 799 frames in total). After training, the network was tested on an in vitro point target scenario that was dissimilar to the training data, in addition to in vivo carotid validation datasets. In the point target phantom image beamformed from inferred channel data, spatial aliasing artifacts attributed to array pitch doubling were found to be reduced by up to 10 dB. For carotid imaging, our proposed approach yielded a lumen-to-tissue contrast that was on average within 3 dB compared to the full-aperture image, whereas without channel data inferencing, the carotid lumen was obscured. When implemented on an RTX-2080 GPU, the inference time to apply the trained network was 4 ms, which favors real-time imaging. Overall, our technique shows that with the help of deep learning, channel data transfer rates can be effectively halved with limited impact on the resulting image quality.


Deep Learning , Artifacts , Humans , Image Processing, Computer-Assisted/methods , Phantoms, Imaging , Transducers , Ultrasonography/methods
20.
Ultrasound Med Biol ; 48(7): 1268-1281, 2022 07.
Article En | MEDLINE | ID: mdl-35461725

Microbubble-mediated ultrasound (MB-US) can be used to realize sonoporation and, in turn, facilitate the transfection of leukocytes in the immune system. Nevertheless, the bio-effects that can be induced by MB-US exposure on leukocytes have not been adequately studied, particularly for different leukocyte lineage subsets with distinct cytological characteristics. Here, we describe how that same set of MB-US exposure conditions would induce heterogeneous bio-effects on the three main leukocyte subsets: lymphocytes, monocytes and granulocytes. MB-US exposure was delivered by applying 1-MHz pulsed ultrasound (0.50-MPa peak negative pressure, 10% duty cycle, 30-s exposure period) in the presence of microbubbles (1:1 cell-to-bubble ratio); sonoporated and non-viable leukocytes were respectively labeled using calcein and propidium iodide. Flow cytometry was then performed to classify leukocytes into their corresponding subsets and to analyze each subset's post-exposure viability, sonoporation rate, uptake characteristics and morphology. Results revealed that, when subjected to MB-US exposure, granulocytes experienced the highest loss of viability (64.0 ± 11.0%) and the lowest sonoporation rate (6.3 ± 2.5%), despite maintaining their size and granularity. In contrast, lymphocytes exhibited the lowest loss of viability (20.9 ± 7.0%), while monocytes had the highest sonoporation rate (24.1 ± 13.6%). For these two sonoporated leukocyte subsets, their cell size and granularity were found to be reduced. Also, they exhibited graded levels of calcein uptake, whereas sonoporated granulocytes achieved only mild calcein uptake. These heterogeneous bio-effects should be accounted for when using MB-US and sonoporation in immunomodulation applications.


Monocytes , Sonication , Granulocytes , Lymphocytes , Microbubbles , Sonication/methods
...