Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Biol Macromol ; 271(Pt 1): 132616, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38795885

RESUMEN

Effective EPR and tumor penetration are bottlenecks in current nanomedicine therapy. Comosol software was utilized to analyze the motion process of nanoparticles (NPs) with different shapes, from blood vessels to tumor tissue, to address this. By calculation, urchin-like NPs experienced higher drag forces than spherical NPs, facilitating their EPR and tumor penetration effects. Thus, urchin-like indocyanine green-loaded hydroxyethyl starch-cholesterol (ICG@HES-CH) NPs were prepared by leveraging the instability of ICG responding to near-infrared light (NIR). Upon NIR exposure, ICG degraded and partly disintegrated ICG@HES-CH NPs, and its morphology transformed from spherical to urchin-like. Vincristine (VC), as a model drug, was loaded in urchin-like ICG@HES-CH NPs for the treatment of lymphoma. A20 lymphoma cells and 3T3-A20 tumor organoids were employed to investigate the influence of shape on NPs' cellular uptake, penetration pathway, and cytotoxicity. It demonstrated that urchin-like ICG@HES-CH NPs mainly transport across the extracellular matrix through intercellular pathways, easily reaching the deep tumor sites and achieving higher cytotoxicity. In vivo VC distribution and anti-tumor results indicated that urchin-like NPs increased VC EPR and penetration ability, lowering VC neurotoxicity and superior anti-tumor effect. Therefore, urchin-like ICG@HES-CH NPs have great translational potential to be used as chemotherapeutic nanocarriers in anticancer therapy.


Asunto(s)
Portadores de Fármacos , Derivados de Hidroxietil Almidón , Verde de Indocianina , Nanopartículas , Verde de Indocianina/química , Verde de Indocianina/farmacología , Animales , Nanopartículas/química , Ratones , Portadores de Fármacos/química , Línea Celular Tumoral , Derivados de Hidroxietil Almidón/química , Derivados de Hidroxietil Almidón/farmacología , Vincristina/farmacología , Vincristina/química , Humanos
2.
J Biomater Appl ; 37(10): 1835-1846, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37016537

RESUMEN

Triple-negative breast cancer (TNBC), which accounts for 10%-20% of breast cancer cases, is characterized by a higher metastasis rate, higher recurrence risk, and worse prognosis. Traditional treatments such as chemotherapy, surgery, and radiotherapy have limited therapeutic effects. Although immune checkpoint blockade (ICB) therapy represented by anti-programmed death 1 (aPD-1) antibody has made further progress in treating TNBC, its therapeutic effect is still not optimistic. Ataxia telangiectasia mutated (ATM) is a critical factor in the DNA damage response (DDR) pathway, which is associated with the development of tumors. Recent studies have found that it can regulate the tumor immune microenvironment, affecting ICB responsiveness. Inhibition of ATM could enhance ICB therapy by promoting mitochondrial DNA cytoplasmic leakage and activating the innate immune signaling pathway. To explore the effect of ATM siRNA(siATM) on the ICB responsiveness of TNBC, we designed and synthesized nanoparticles using 1,2-dioleoyl-glycero-3-phosphatidylcholine (DOPC) liposomes to deliver siATM. In vitro and in vivo experiments demonstrated that DOPC/siATM could enhance the ability of siRNA to enter tumor cells and effectively inhibit the expression of ATM protein. Our study found that nanoparticles carrying siATM could activate cytotoxic T lymphocytes and regulate the immunosuppressive tumor microenvironment (ITM) by activating the cGAS-STING pathway. Its combination with aPD-1 may be a potential way to improve the efficacy of TNBC.


Asunto(s)
Ataxia Telangiectasia , Neoplasias de la Mama Triple Negativas , Humanos , Ataxia Telangiectasia/tratamiento farmacológico , Neoplasias de la Mama Triple Negativas/terapia , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Inhibidores de Puntos de Control Inmunológico , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/uso terapéutico , Liposomas , Microambiente Tumoral , Proteínas de la Ataxia Telangiectasia Mutada/genética , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Proteínas de la Ataxia Telangiectasia Mutada/uso terapéutico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...