Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Biosens Bioelectron ; 87: 439-446, 2017 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-27591718

RESUMEN

Detection of ultralow concentration of heavy metal ion Hg2+ is important for human health protection and environment monitoring because of the gradual accumulation in environmental and biological fields. Herein, we report a convenient chemiluminescence (CL) biosensing platform for ultrasensitive Hg2+ detection by signal amplification mechanism from positively charged gold nanoparticles ((+)AuNPs). It is based on (+)AuNPs charge effect and aptamer conformation change induced by target to stimulate the generation of CL in the presence of H2O2 and luminol without high salt medium. Notably particularly, the typical problem of the high salt medium from (-) AuNPs system, like influencing aptamers' bind with target and hindering CL reaction can be effectively addressed through the direct introduction of (+)AuNPs. Therefore, the proposed biosensing exhibits a high sensitivity toward target Hg2+ with a detection limit of 16 pM, which is far below the limit (10nM) defined by the U.S. Environmental Protection Agency in drinkable water, and is about 10-fold lower than the previously reported aptamer-based assays for Hg2+. This sensing platform provides a simple, rapid, and cost-effective approach for label-free sensitive detection of Hg2+. Moreover, it is universal for the detection of other targets. Undoubtedly, such a direct utilizing of (+)AuNPs' charge effect will provide a new signal amplification way for label-free aptamer-based CL analysis.


Asunto(s)
Aptámeros de Nucleótidos/química , Técnicas Biosensibles/métodos , Oro/química , Mediciones Luminiscentes/métodos , Mercurio/análisis , Nanopartículas del Metal/química , Contaminantes Químicos del Agua/análisis , Técnicas Biosensibles/economía , Cationes Bivalentes/análisis , Agua Potable/análisis , Lagos/análisis , Límite de Detección , Sustancias Luminiscentes/química , Mediciones Luminiscentes/economía , Luminol/química , Nanopartículas del Metal/ultraestructura
2.
Waste Manag ; 60: 643-651, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-27876566

RESUMEN

In this study, supercritical methanol (SCM) process was successfully used for the preparation of ultrafine copper materials from waste printed circuit boards (PCBs) after nitric acid pretreatment. Waste PCBs were pretreated twice in nitric acid. Sn and Pb were recovered by the first nitric acid pretreatment. The leach liquor with a high concentration of copper ions after the second nitric acid leaching was subjected to SCM process. The mixture of Cu and Cu2O with poor uniformity of particle size was formed due to the effect of ferric iron contained in the leach liquor of waste PCBs, while more uniform and spherical Cu particles with high monodispersity and smaller size could be prepared after the removal of Fe. The size of Cu particles increased obviously with the decline of SCM temperature, and particles became highly aggregated when the reaction temperature decreased to 300°C. The size of Cu particles decreased markedly with the decrease of initial concentration of copper ion in the leach liquor of waste PCBs. It is believed that the process developed in this study is simple and practical for the preparation of ultrafine copper materials from waste PCBs with the aim of recycling these waste resources as a high value-added product.


Asunto(s)
Cobre/aislamiento & purificación , Residuos Electrónicos , Reciclaje/métodos , Residuos , Cobre/química , Hierro/aislamiento & purificación , Metanol/química , Nanoestructuras/química , Temperatura
3.
J Hazard Mater ; 315: 102-9, 2016 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-27179704

RESUMEN

In this study, a novel reutilization method for waste printed circuit boards (PCBs) as flame retardant and smoke suppressant for poly (vinyl chloride) (PVC) was successfully testified. A supercritical water oxidation (SCWO) process was applied to treat waste PCBs before they could be used as flame retardants of PVC. The results indicated that SCWO conditions had a significant effect on the flame retarding and smoke suppressing properties of waste PCBs for PVC. Cu2O, CuO, and SnO2 were the main active ingredients in waste PCBs-derived flame retardants. A conversion of Cu elements (Cu(0)→Cu(+)→Cu(2+)) during SCWO process with the increase of reaction temperature was found to be the key influence factor for the flame retarding properties of SCWO-treated PCBs. The experiment results also showed that there was a synergistic effect of flame retardancy between Cu(+) and Cu(2+). After the optimized SCWO treatment, SCWO-treated PCBs significantly improved the flame retardancy and smoke suppression of PVC. Limiting oxygen index (LOI) and char yield (CY) increased with increasing SCWO-treated PCBs content in PVC, while smoke density rating (SDR) and maximum smoke density (MSD) decreased markedly. The mechanical properties of PVC samples were influenced in different degree by adding different content SCWO-treated PCBs.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA