Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 550
Filtrar
1.
Adv Mater ; : e2408686, 2024 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-39240027

RESUMEN

Simultaneously controlling defects and film morphology at the buried interface is a promising approach to improve the power conversion efficiency (PCE) of inverted perovskite solar cells (PSCs). Here, two new donor‒acceptor type semiconductive covalent organic frameworks (COFs) are developed, COFTPA and COFICZ. The carefully designed COFs structure not only effectively regulates the morphology and defects of the buried interface film, but also realizes the alignment with the energy level of the perovskite film and enhances the extraction and transmission of the interface charge. Among them, COFICZ-treated inverted PSCs achieved a maxmum PCE of 25.68% (certified 25.14%), the inverted PCE reached a minimum PCE of 22.92% for 1 cm2 device. The efficiency of inverted PSCs with a 1.68 eV wide bandgap reached 22.92%, which is the highest datum of the reported 1.68 eV wide bandgap PSC. This lays the groundwork for the commercialization of perovskite/silicon tandem solar cells. Additionally, the unencapsulated devices demonstrated a high degree of stability during operational use and when subjected to conditions of high humidity and temperature.

2.
J Res Med Sci ; 29: 29, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39239074

RESUMEN

Background: Mesenchymal stem cells (MSCs) are considered a promising therapeutic strategy for rheumatoid arthritis (RA), but the current clinical results are varied. This study is to analyze the therapeutic effect of cell-based strategies on RA. Materials and Methods: The searches were performed with public databases from inception to June 17, 2021. Randomized controlled trials researching cell-based therapies in RA patients were included. Results: Eight studies, including 480 patients, were included in the analysis. The results showed that compared to the control, MSC treatment significantly reduced the disease activity score (DAS) at the second standardized mean difference (SMD): -0.70; 95% confidence interval (CI): -1.25, -0.15; P = 0.01) and 3rd month (SMD: -1.47; 95% CI: -2.77, -0.18; P < 0.01) and significantly reduced the rheumatoid factor (RF) level at the first (SMD: -0.38; 95% CI: -0.72, -0.05; P = 0.03) and 6th months (SMD: -0.81; 95% CI: -1.32, -0.31; P < 0.01). In the network meta-analysis, MSCs combined with interferon-γ (MSC_IFN) had a significant effect on increasing the American college of rheumatology criteria (ACR) 20, ACR50, and DAS <3.2 populations, had a significant effect on reducing the DAS, and decreased the RF level for a long period. Conclusion: MSCs could relieve the DAS of RA patients in the short term and reduce the level of RF. MSC_IFN showed a more obvious effect, which could significantly improve the results of ACR20, ACR50, and DAS <3.2 and reduce the DAS and RF levels.

3.
Sleep Med Rev ; 78: 101989, 2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-39153335

RESUMEN

Habitual daytime napping is a common behavioral and lifestyle practice in particular countries and is often considered part of a normal daily routine. However, recent evidence suggests that the health effects of habitual daytime napping are controversial. We systematically searched PubMed, Web of Science, Embase, and Cochrane Library databases from inception to March 9, 2024, to synthesize cohort studies of napping and health outcome risk. A total of 44 cohort studies with 1,864,274 subjects aged 20-86 years (mean age 56.4 years) were included. Overall, habitual napping increased the risk of several adverse health outcomes, including all-cause mortality, cardiovascular disease, metabolic disease, and cancer, and decreased the risk of cognitive impairment and sarcopenia. Individuals with a napping duration of 30 min or longer exhibited a higher risk of all-cause mortality, cardiovascular disease, and metabolic disease, whereas those with napping durations less than 30 min had no significant risks. No significant differences in napping and health risks were observed for napping frequency, percentage of nappers, sample size, sex, age, body mass index, follow-up years, or comorbidity status. These findings indicate that individuals with a long napping duration should consider shortening their daily nap duration to 30 min or less.

4.
Angew Chem Int Ed Engl ; : e202414118, 2024 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-39160140

RESUMEN

Trap-assisted non-radiative recombination losses and moisture-induced degradation significantly impede the development of highly efficient and stable inverted (p-i-n) perovskite solar cells (PSCs), which require high-quality perovskite bulk. In this research, we mitigate these challenges by integrating thermally stable perovskite layers with Lewis base covalent organic frameworks (COFs). The ordered pore structure and surface binding groups of COFs facilitate cyclic, multi-site chelation with undercoordinated lead ions, enhancing the perovskite quality across both its bulk and grain boundaries. This process not only reduces defects but also promotes improved energy alignment through n-type doping at the surface. The inclusion of COF dopants in p-i-n devices achieves power conversion efficiencies (PCEs) of 25.64% (certified 24.94%) for a 0.0748-cm2 device and 23.49% for a 1-cm2 device. Remarkably, these devices retain 81% of their initial PCE after 978 hours of accelerated aging at 85˚C, demonstrating remarkable durability. Additionally, COF-doped devices demonstrate excellent stability under illumination and in moist conditions, even without encapsulation.

5.
Angew Chem Int Ed Engl ; : e202409926, 2024 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-39155269

RESUMEN

Imine-linked covalent organic frameworks (COFs) are garnering substantial interest in resistive random-access memory, attributed to their superior crystallinity, excellent chemical and thermal stability, and modifiable molecular structures. However, the development of high-performance COF-based memristors impeded by challenges such as low conjugation degree of imine bonds and poor electron delocalization ability. Herein, we report a protonation strategy to modify the imine bonds of donor-acceptor (D-A) type COFs. This modification significantly enhances the electron delocalization capability of imine bonds, lowers the energy barriers for electron injection from electrodes, and stabilizes the conductive charge transfer state, thus markedly improving device performance. The protonated COF-BTT-BPy and COF-BTT-TAPT thin films-based memristors show remarkable device performance with a high ON/OFF current ratio of 105, a low driving voltage, and outstanding endurance exceeding 600 and 1300 cycles, respectively, which is nearly twice the durability of analogous non-protonated COFs-based memristors. Notably, the protonated COF-BTT-TAPT-based memristor exhibit the highest number of cycles reported at present. This work not only unprecedentedly enhances the performance of COF-based memristors, but also provides a universal and promising approach for the molecular design and potential application of D-A type imine-linked COFs.

6.
World J Gastrointest Oncol ; 16(6): 2449-2462, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38994132

RESUMEN

BACKGROUND: Regorafenib (R) and fruquintinib (F) are the standard third-line regimens for colorectal cancer (CRC) according to the National Comprehensive Cancer Network guidelines, but both have limited efficacy. Several phase 2 trials have indicated that R or F combined with immune checkpoint inhibitors can reverse immunosuppression and achieve promising efficacy for microsatellite stable or proficient mismatch repair (MSS/pMMR) CRC. Due to the lack of studies comparing the efficacy between F, R, F plus programmed death-1 (PD-1) inhibitor, and R plus PD-1 inhibitors (RP), it is still unclear whether the combination therapy is more effective than monotherapy. AIM: To provide critical evidence for selecting the appropriate drugs for MSS/pMMR metastatic CRC (mCRC) patients in clinical practice. METHODS: A total of 2639 CRC patients were enrolled from January 2018 to September 2022 in our hospital, and 313 MSS/pMMR mCRC patients were finally included. RESULTS: A total of 313 eligible patients were divided into F (n = 70), R (n = 67), F plus PD-1 inhibitor (FP) (n = 95) and RP (n = 81) groups. The key clinical characteristics were well balanced among the groups. The median progression-free survival (PFS) of the F, R, FP, and RP groups was 3.5 months, 3.6 months, 4.9 months, and 3.0 months, respectively. The median overall survival (OS) was 14.6 months, 15.7 months, 16.7 months, and 14.1 months. The FP regimen had an improved disease control rate (DCR) (P = 0.044) and 6-month PFS (P = 0.014) and exhibited a better trend in PFS (P = 0.057) compared with F, and it was also significantly better in PFS than RP (P = 0.030). RP did not confer a significant survival benefit; instead, the R group had a trend toward greater benefit with OS (P = 0.080) compared with RP. No significant differences were observed between the R and F groups in PFS or OS (P > 0.05). CONCLUSION: FP is superior to F in achieving 6-month PFS and DCR, while RP is not better than R. FP has an improved PFS and 6-month PFS compared with RP, but F and R had similar clinical efficacy. Therefore, FP may be a highly promising strategy in the treatment of MSS/pMMR mCRC.

7.
World Neurosurg ; 2024 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-39032638

RESUMEN

OBJECTIVE: To compare whether there is a difference in the efficacy of complete endoscopic microvascular decompression (EVD) and microscopic microvascular decompression (MVD) in patients with classical trigeminal neuralgia (CTN). METHODS: From January 2014 to January 2021, 297 CTN patients were assigned to the retrosigmoid approach EVD (138 cases) and the MVD groups (159 cases); to compare whether there are differences in the pain control rate, recurrence, complications of CTN patients between the 2operations, and separately predict the factors related to prognosis of both groups. RESULTS: There was no significant difference in painless rates at 1, 3, and 5 years after surgery (P = 0.356, P = 0.853, P = 1), and overall incidence of complications (P = 0.058) between the EVD and MVD groups. The EVD group had shorter surgical decompression duration than the MVD group (P < 0.001). The painless rate of patients with vertebrobasilar trigeminal neuralgia in the EVD group was higher than that in the MVD group, but the difference was not statistically significant (90% vs. 61.1%, P = 0.058). The independent risk factors associated with a good prognosis in the EVD group were a shorter course of the disease and severe neurovascular conflict, while severe neurovascular conflict is the only independent risk factor associated with a good prognosis in the MVD group. CONCLUSIONS: For CTN patients, compared with traditional MVD, EVD is also safe and effective and has the advantage of shorter decompression time.The predictive results of prognostic factors also suggest that CTN patients may benefit more from early surgical treatment.

8.
Int Immunopharmacol ; 139: 112602, 2024 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-39033660

RESUMEN

Chronic pain has emerged as a significant public health issue, seriously affecting patients' quality of life and psychological well-being, with a lack of effective pharmacological treatments. Numerous studies have indicated that macrophages play a crucial role in inflammatory pain, and targeting neuro-immune interactions for drug development may represent a promising direction for pain management. Chilobrachys jingzhao (C. jingzhao) is used as a folk medicine of the Li nationality with the efficacy of eliminating swelling, detoxicating, and relieving pain, and the related products are widely used in the market. However, the chemical constituents of C. jingzhao have not been reported, and the pharmacodynamic substance and the precise functional mechanism are unrevealed. Here we isolated a cyclic dipeptide, cyclo(L-Pro-L-Trp) (CPT) from C. jingzhao for the first time. CPT remarkably alleviated formalin-induced inflammatory pain and significantly inhibited inflammatory responses. In vivo, CPT attenuated neutrophil infiltration and plantar tissue edema and suppressed the mRNA expression of pro-inflammatory molecules. In vitro, CPT suppressed inflammation triggered by lipopolysaccharide (LPS) in both RAW 264.7 and iBMDM cells, reducing expressions of inducible nitric oxide synthase (iNOS), superoxide, and pro-inflammatory molecules. A mechanistic study revealed that CPT exerted an anti-inflammatory activity by blocking the mitogen-activated protein kinases (MAPK) and nuclear factor-kappa B (NF-κB) signaling pathways, as well as alleviating the ubiquitination of tumor necrosis factor receptor-associated factor 6 (TRAF6). Our results elucidated the pharmacodynamic material basis of C. jingzhao, and CPT can be a promising lead for alleviating inflammation and inflammatory pain.


Asunto(s)
Antiinflamatorios , Formaldehído , Inflamación , FN-kappa B , Transducción de Señal , Factor 6 Asociado a Receptor de TNF , Animales , FN-kappa B/metabolismo , Ratones , Factor 6 Asociado a Receptor de TNF/metabolismo , Antiinflamatorios/uso terapéutico , Antiinflamatorios/farmacología , Masculino , Transducción de Señal/efectos de los fármacos , Inflamación/tratamiento farmacológico , Células RAW 264.7 , Péptidos Cíclicos/farmacología , Péptidos Cíclicos/uso terapéutico , Dolor/tratamiento farmacológico , Dolor/inducido químicamente , Analgésicos/uso terapéutico , Analgésicos/farmacología , Humanos , Edema/tratamiento farmacológico , Edema/inducido químicamente , Edema/inmunología , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Macrófagos/efectos de los fármacos , Macrófagos/inmunología
9.
Small ; : e2401767, 2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38847563

RESUMEN

Porous graphene, including 2D and 3D porous graphene, is widely researched recently. One of the most attractive features is the proper utilization of graphene defects, which combine the advantages of both graphene and porous materials, greatly enriching the applications of porous graphene in biology, chemistry, electronics, and other fields. In this review, the defects of graphene are first discussed to provide a comprehensive understanding of porous graphene. Then, the latest advancements in the preparation of 2D and 3D porous graphene are presented. The pros and cons of these preparation methods are discussed in detail, providing a direction for the fabrication of porous graphene. Moreover, various superior properties of porous graphene are described, laying the foundation for their promising applications. Owing to its abundant morphology, wide distribution of pore size, and remarkable properties benefited from porous structure, porous graphene can not only promote molecular diffusion and electron transfer but also expose more active sites. Consequently, a serious of applications containing gas sieving, liquid separation, sensors, and supercapacitors, are presented. Finally, the challenges confronted during preparation and characterization of porous graphene are discussed, offering guidance for the future development of porous graphene in fabrication, characterization, properties, and applications.

10.
Adv Mater ; 36(32): e2403961, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38830614

RESUMEN

In recent years, conjugated polymers have received widespread attention due to their characteristic advantages of light weight, favorable solution processability, and structural modifiability. Among various conjugated polymers, fluorinated ones have developed rapidly to achieve high-performance n-type or ambipolar polymeric semiconductors. The uniqueness of fluorinated conjugated polymers contains the high coplanarity of their structures, lower frontier molecular orbital energy levels, and strong nonbonding interactions. In this review, first the fluorinated building blocks, including fluorinated benzene and thiophene rings, fluorinated B←N bridged units, and fluoroalkyl side chains are summarized. Subsequently, different synthetic methods of fluorinated conjugated polymers are described, with a special focus on their respective advantages and disadvantages. Then, with these numerous fluorinated structures and appropriate synthetic methods bear in mind, the properties and applications of the fluorinated conjugated polymers, such as cyclopentadithiophene-, amide-, and imide-based polymers, and B←N embedded polymers, are systematically discussed. The introduction of fluorine atoms can further enhance the electron-deficiency of the backbone, influencing the charge carrier transport performance. The promising fluorinated conjugated polymers are applied widely in organic field-effect transistors, organic solar cells, organic thermoelectric devices, and other organic opto-electric devices. Finally, the outlook on the challenges and future development of fluorinated conjugated polymers is systematically discussed.

11.
Phys Rev Lett ; 132(19): 197202, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38804947

RESUMEN

The higher-order topological phases have attracted intense attention in the past years, which reveals various intriguing topological properties. Meanwhile, the enrichment of group symmetries with projective symmetry algebras redefines the fundamentals of topological matter and makes Stiefel-Whitney (SW) classes in classical wave systems possible. Here, we report the experimental realization of higher-order topological nodal loop semimetal in an acoustic system and obtain the inherent SW topological invariants. In stark contrast to higher-order topological semimetals relating to complex vector bundles, the hinge and surface states in the SW topological phase are protected by two distinctive SW topological charges relevant to real vector bundles. Our findings push forward the studies of SW class topology in classical wave systems, which also show possibilities in robust high-Q-resonance-based sensing and energy harvesting.

12.
Ultrasonics ; 141: 107338, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38723293

RESUMEN

Recently, the moiré pattern has attracted lots of attention by superimposing two planar structures of regular geometries, such as two sets of metasurfaces or gratings. Here, we show the experimental investigation of acoustic moiré effect by using twisted bilayer gratings (i.e., one grating twisted with respect to the other). We observed the guided resonance that occurred when the incident ultrasound beam was coupled with the guiding modes in a meta-grating, significantly influencing the reflection and transmission. Tunable guided resonances from the moiré effect with complete ultrasound reflection at different frequencies were further demonstrated in experiments. Combining the measurements of transmission spectra and the Fast Fourier Transform analyses, we reveal the guided resonance frequencies of moiré ultrasonic metasurface can be effectively controlled by adjusting the twisting angle of the bilayer gratings. Our results can be explained in a simplified model based on the band folding theory, providing a reliable prediction on the precise control of ultrasound reflection via the twisting angle adjustment. Our work extends the moiré metasurface from optics into acoustics, which shows more possibilities for the ultrasound beam engineering from the moiré effect and enables the exploration of functional acoustic devices for ultrasound imaging, treatment and diagnosis.

13.
Mol Cell Biochem ; 479(7): 1707-1720, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38822192

RESUMEN

HOXC6 (Homeobox C6) and methyltransferase-like 3 (METTL3) have been shown to be involved in the progression of prostate cancer (PCa). However, whether HOXC6 performs oncogenic effects in PCa via METTL3-mediated N6-methyladenosine (m6A) modification is not yet reported. The Cell Counting Kit-8 (CCK-8), 5-ethynyl-2'-deoxyuridine (EdU), flow cytometry, transwell, scratch, sphere formation assays were applied for cell growth, invasion, migration and stemness analyses. Glycolysis was evaluated by measuring glucose consumption, lactate generation and ATP/ADP ratio. The N6-methyladenine (m6A) modification profile was determined by RNA immunoprecipitation (Me-RIP) assay. The proteins that interact with PGK1 (phosphoglycerate kinase 1) were confirmed by Co-immunoprecipitation assay. Tumor formation experiments in mice were conducted for in vivo assay. PCa tissues and cells showed highly expressed HOXC6 and METTL3. Functionally, the silencing of HOXC6 or METTL3 suppresses PCa cell proliferation, invasion, migration, stemness, and glycolysis. Moreover, METTL3-induced HOXC6 m6A modification to stabilize its expression. In addition, the m6A reader IGF2BP2 directly recognized and bound to HOXC6 mRNA, and maintained its stability, and was involved in the regulation of HOXC6 expression by METTL3. Furthermore, IGF2BP2 knockdown impaired PCa cell proliferation, invasion, migration, stemness, and glycolysis by regulating HOXC6. Besides that HOXC6 interacted with the glycoytic enzyme PGK1 in PCa cells. In vivo assays further showed that METTL3 silencing reduced the expression of HOXC6 and PGK1, and impeded PCa growth. METTL3 promoted PCa progression by maintaining HOXC6 expression in an m6A-IGF2BP2-dependent mechanism.


Asunto(s)
Adenosina , Proteínas de Homeodominio , Metiltransferasas , Neoplasias de la Próstata , Proteínas de Unión al ARN , Metiltransferasas/metabolismo , Metiltransferasas/genética , Masculino , Humanos , Neoplasias de la Próstata/metabolismo , Neoplasias de la Próstata/patología , Neoplasias de la Próstata/genética , Proteínas de Homeodominio/metabolismo , Proteínas de Homeodominio/genética , Animales , Ratones , Proteínas de Unión al ARN/metabolismo , Proteínas de Unión al ARN/genética , Adenosina/análogos & derivados , Adenosina/metabolismo , Proliferación Celular , Regulación Neoplásica de la Expresión Génica , Progresión de la Enfermedad , Fosfoglicerato Quinasa/metabolismo , Fosfoglicerato Quinasa/genética , Línea Celular Tumoral , Glucólisis , Movimiento Celular , Ratones Desnudos
14.
Sci Adv ; 10(16): eadn1746, 2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38640240

RESUMEN

Phase modulation has scarcely been mentioned in diffusive physical systems because the diffusion process does not carry the momentum like waves. Recently, non-Hermitian physics provides a unique perspective for understanding diffusion and shows prospects in thermal phase regulation, exemplified by the discovery of anti-parity-time (APT) symmetry in diffusive systems. However, precise control of thermal phase remains elusive hitherto and can hardly be realized, due to the phase oscillations. Here we construct the PT-symmetric diffusive systems to achieve the complete suppression of thermal phase oscillation. The real coupling of diffusive fields is readily established through a strong convective background, and the decay-rate detuning is enabled by thermal metamaterial design. We observe the phase transition of PT symmetry breaking with the symmetry-determined amplitude and phase regulation of coupled temperature fields. Our work shows the existence of PT symmetry in dissipative energy exchanges and provides unique approaches for harnessing the mass transfer of particles, wave dynamics in strongly scattering systems, and thermal conduction.

15.
Sci Bull (Beijing) ; 69(9): 1228-1236, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38503653

RESUMEN

The paradigm shift of Hermitian systems into the non-Hermitian regime profoundly modifies inherent property of the topological systems, leading to various unprecedented effects such as the non-Hermitian skin effect (NHSE). In the past decade, the NHSE has been demonstrated in quantum, optical and acoustic systems. Beside those wave systems, the NHSE in diffusive systems has not yet been observed, despite recent abundant advances in the study of topological thermal diffusion. In this work, we design a thermal diffusion lattice based on a modified Su-Schrieffer-Heeger model and demonstrate the diffusive NHSE. In the proposed model, the asymmetric temperature field coupling inside each unit cell can be judiciously realized by appropriate configurations of structural parameters. We find that the temperature fields trend to concentrate toward the target boundary which is robust against initial excitation conditions. We thus experimentally demonstrated the NHSE in thermal diffusion and verified its robustness against various defects. Our work provides a platform for exploration of non-Hermitian physics in the diffusive systems, which has important applications in efficient heat collection, highly sensitive thermal sensing and others.

16.
Int Nurs Rev ; 2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38477788

RESUMEN

AIM: To evaluate the mediating roles of occupational resilience and the moderationg role of perceived organizational support in the relationship between career calling and nurse burnout. BACKGROUND: Burnout is a frequent and serious problem in the field of nursing, and it poses a serious threat to both nurses' health and patient safety. Although many studies have described the links between burnout, career calling, and occupational resilience, little is known about the actual mechanisms between career calling and nurse burnout. METHODS: A cross-sectional study of 615 nurses in China was conducted using a convenience sampling method. The data were analyzed using descriptive statistics and Pearson correlation analysis. Hypotheses were tested using structural equation models and bootstrapping methods. STROBE guidelines were followed. RESULTS: Career calling was found to be negatively associated with nurse burnout, and occupational resilience mediated the relationship between career calling and burnout. Additionally, perceived organizational support was found to play a moderating role in the relationship between occupational resilience and burnout. CONCLUSION: Career calling can reduce burnout by increasing nurses' levels of occupational resilience, and perceived organizational support moderates this mechanism. Hence, policies focused on encouraging and sustaining career calling should be provided by nurse managers in order to enhance stress resistance and reduce burnout.

17.
Adv Mater ; 36(23): e2312421, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38386009

RESUMEN

The discovery of higher-order topological insulator metamaterials, in analogy with their condensed-matter counterparts, has enabled various breakthroughs in photonics, mechanics, and acoustics. A common way of inducing higher-order topological wave phenomena is through pseudo-spins, which mimic the electron spins as a symmetry-breaking degree of freedom. Here, this work exploits degenerate orbitals in acoustic resonant cavities to demonstrate versatile, orbital-selective, higher-order topological corner states. Type-II corner states are theoretically investigated and experimentally demonstrated based on tailored orbital interactions, without the need for long-range hoppings that has so far served as a key ingredient for Type-II corner states in single-orbital systems. Due to the orthogonal nature of the degenerate p orbitals, this work also introduces a universal strategy to realize orbital-dependent edge modes, featuring high-Q edge states identified in bulk bands. These findings provide an understanding of the interplay between acoustic orbitals and topology, shedding light on orbital-related topological wave physics, as well as its applications for acoustic sensing and trapping.

18.
BMC Cardiovasc Disord ; 24(1): 129, 2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-38424525

RESUMEN

PURPOSE: This study was aimed to identify the risk factors that influence the mortality risk in patients with acute aortic dissection (AAD) within one year after discharge, and aimed to construct a predictive model for assessing mortality risk. METHODS: The study involved 320 adult patients obtained from the Medical Information Mart for Intensive Care (MIMIC) database. Logistic regression analysis was conducted to identify potential risk factors associated with mortality in AAD patients within one year after discharge and to develop a predictive model. The performance of the predictive model was assessed using the receiver operating characteristic curve (ROC), calibration curve, and decision curve analysis (DCA). To further validate the findings, patient data from the First Affiliated Hospital of Guangxi Medical University (157 patients) were analyzed. RESULTS: Univariate and multivariate logistic regression analyses revealed that gender, length of hospital stay, highest blood urea nitrogen (BUN_max), use of adrenaline, and use of amiodarone were significant risk factors for mortality within one year after discharge (p < 0.05). The constructed model exhibited a consistency index (C-index) and an area under the ROC curve of 0.738. The calibration curve and DCA demonstrated that these indicators had a good degree of agreement and utility. The external validation results of the model also indicated good predictability (AUC = 0.700, p < 0.05). CONCLUSION: The personalized scoring prediction model constructed by gender, length of hospital stays, BUN_max levels, as well as the use of adrenaline and amiodarone, can effectively identify AAD patients with high mortality risk within one year after discharge.


Asunto(s)
Amiodarona , Disección Aórtica , Adulto , Humanos , Estudios Transversales , Alta del Paciente , China/epidemiología , Disección Aórtica/diagnóstico , Disección Aórtica/terapia , Epinefrina , Factores de Riesgo , Estudios Retrospectivos
19.
Zhongguo Zhong Yao Za Zhi ; 49(2): 294-303, 2024 Jan.
Artículo en Chino | MEDLINE | ID: mdl-38403305

RESUMEN

Lung cancer is the leading cause of cancer death, and its effective treatment is a difficult medical problem. Lung cancer belongs to the traditional Chinese medicine(TCM) disease categories of lung accumulation, lung amassment, and overstrain cough. Rich theoretical basis and practical experience have been accumulated in the TCM treatment of lung cancer. Astragali Radix is one of the representatives of Qi-tonifying drugs. It mainly treat the lung cancer with the syndrome of Qi deficiency and pathogen stagnation, following the principle of reinforcing healthy Qi and eliminating patgogenic Qi. Astragali Radix exerts a variety of pharmacological activities in the treatment of lung cancer, including inhibiting tumor cell proliferation and promoting tumor cell apoptosis, inhibiting tumor invasion and migration, regulating the tumor microenvironment, suppressing tumor angiogenesis, modulating autophagy, inducing macrophage polarization, enhancing immunity, inhibiting immune escape, and reversing cisplatin resistance. The active ingredients of Astragali Radix in treating lung cancer include polysaccharides, saponins, and flavonoids. This study reviewed the pharmacological activities and active ingredients of Astragali Radix in the treatment of lung cancer, providing a basis for the development and utilization of Astragali Radix resources and active ingredients and the research and development of anti-tumor drugs.


Asunto(s)
Planta del Astrágalo , Medicamentos Herbarios Chinos , Neoplasias Pulmonares , Humanos , Medicamentos Herbarios Chinos/uso terapéutico , Neoplasias Pulmonares/tratamiento farmacológico , Medicina Tradicional China , Raíces de Plantas , Microambiente Tumoral
20.
Nat Commun ; 15(1): 1478, 2024 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-38368404

RESUMEN

For classical waves, phase matching is vital for enabling efficient energy transfer in many scenarios, such as waveguide coupling and nonlinear optical frequency conversion. Here, we propose a temporal quasi-phase matching method and realize robust and complete acoustical energy transfer between arbitrarily detuned cavities. In a set of three cavities, A, B, and C, the time-varying coupling is established between adjacent elements. Analogy to the concept of stimulated Raman adiabatic passage, amplitudes of the two couplings are modulated as time-delayed Gaussian functions, and the couplings' signs are periodically flipped to eliminate temporal phase mismatching. As a result, robust and complete acoustic energy transfer from A to C is achieved. The non-reciprocal frequency conversion properties of our design are demonstrated. Our research takes a pivotal step towards expanding wave steering through time-dependent modulations and is promising to extend the frequency conversion based on state evolution in various linear Hermitian systems to nonlinear and non-Hermitian regimes.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA