Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 67
1.
Front Bioeng Biotechnol ; 12: 1391630, 2024.
Article En | MEDLINE | ID: mdl-38725993

Introduction: Optical coherence tomography (OCT) is a pivotal imaging modality in ophthalmology for real-time, in vivo visualization of retinal structures. To enhance the capability and safety of OCT, this study focuses on the development of a micro intraocular OCT probe. The demand for minimal invasiveness and precise imaging drives the need for advanced probe designs that can access tight and sensitive areas, such as the ocular sclera. Methods: A novel OCT probe was engineered using a piezoelectric tube with quartered electrodes to drive Lissajous scanning movements at the end of a single-mode fiber. This design allows the probe to enter the eyeball through a scleral opening. Structural innovation enables the outer diameter of the endoscopic OCT probe to be adjusted from 13G (2.41 mm) to 25G (0.51 mm), accommodating various imaging field sizes and ensuring compatibility with different scleral incisions. Results: The fabricated micro intraocular OCT probe successfully performed preliminary imaging experiments on in vivo fingers. The Lissajous scanning facilitated comprehensive coverage of the target area, enhancing the imaging capabilities. Discussion: The integration of a piezoelectric tube with quartered outside electrodes into the OCT probe design proved effective for achieving precise control over scanning movements and adaptability to different surgical needs. The design characteristics and practical applications demonstrated the probe's potential in clinical settings.

2.
Front Immunol ; 15: 1303259, 2024.
Article En | MEDLINE | ID: mdl-38660298

Objectives: This study aimed to examine the effectiveness of the best response rate (BRR) as a surrogate for overall survival (OS), using the modified Response Evaluation Criteria in Solid Tumors (mRECIST), in patients with unresectable hepatocellular carcinoma (HCC) undergoing hepatic arterial infusion chemotherapy (HAIC) with fluorouracil, leucovorin, and oxaliplatin (FOLFOX) combined with molecular targeting and immunotherapy. Methods: This study enrolled 111 consecutive patients who had complete imaging data. The median age of patients was 58 years (IQR 50.5-65.0). Among the patients, those with Barcelona Clinic Liver Cancer (BCLC) stage A, BCLC stage B, and BCLC stage C comprised 6.4%, 19.1%, and 73.6%, respectively. The optimal threshold of BRR can be determined using restricted cubic splines (RCS) and the rank sum statistics of maximum selection. Survival curves of patients in the high rating and low rating groups were plotted. We then used the change-in-estimate (CIE) method to filter out confounders and the inverse probability of treatment weighting (IPTW) to balance confounders between the two groups to assess the robustness of the results. Results: The median frequency of the combination treatment regimens administered in the overall population was 3 times (IQR 2.0-3.0). The optimal BRR truncation value calculated was -0.2. Based on this value, 77 patients were categorized as the low rating group and 34 as the high rating group. The differences in the OS between the high and low rating groups were statistically significant (7 months [95%CI 6.0-14.0] vs. 30 months [95%CI 30.0-]; p< 0.001). Using the absolute 10% cut-off value, the CIE method was used to screen out the following confounding factors affecting prognosis: successful conversion surgery, baseline tumor size, BCLC stage, serum total bilirubin level, number of interventional treatments, alpha-fetoprotein level, presence of inferior vena cava tumor thrombus, and partial thrombin activation time. The survival curve was then plotted again using IPTW for confounding factors, and it was found that the low rating group continued to have better OS than the high rating group. Finally, the relationship between BRR and baseline factors was analyzed, and inferior vena cava tumor thrombus and baseline tumor size correlated significantly with BRR. Conclusions: BRR can be used as a surrogate endpoint for OS in unresectable HCC patients undergoing FOLFOX-HAIC in combination with molecular targeting and immunotherapy. Thus, by calculating the BRR, the prognosis of HCC patients after combination therapy can be predicted. Inferior vena cava tumor thrombus and baseline tumor size were closely associated with the BRR.


Antineoplastic Combined Chemotherapy Protocols , Carcinoma, Hepatocellular , Fluorouracil , Immunotherapy , Infusions, Intra-Arterial , Leucovorin , Liver Neoplasms , Humans , Middle Aged , Male , Female , Liver Neoplasms/drug therapy , Liver Neoplasms/mortality , Liver Neoplasms/therapy , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/therapy , Carcinoma, Hepatocellular/mortality , Aged , Fluorouracil/administration & dosage , Fluorouracil/therapeutic use , Leucovorin/therapeutic use , Leucovorin/administration & dosage , Immunotherapy/methods , Treatment Outcome , Molecular Targeted Therapy , Organoplatinum Compounds/administration & dosage , Organoplatinum Compounds/therapeutic use , Hepatic Artery
3.
Polymers (Basel) ; 16(7)2024 Mar 29.
Article En | MEDLINE | ID: mdl-38611198

The fabrication of sustainable structural materials with high physical properties to replace engineering plastics is a major challenge for modern industry, and wood, as the most abundant sustainable natural raw material on the planet, has received a great deal of attention from researchers. Researchers have made efforts to enhance the physical properties of wood in order to replace plastics. However, it is also difficult to meet practical demands at a low cost. Herein, we report a simple and efficient top-down strategy to transform bulk natural basswood into a high-performance structural material. This three-step strategy involves partial removal of hemicellulose and lignin via treating basswood by boiling an aqueous mixture of NaOH and Na2SO3, and a high-pressure steam treatment (HPST) was applied to delignified wood followed by hot-pressing, which allowed the wood to absorb moisture uniformly and quickly. HPST-treated dense delignified wood (HDDW) has a tensile strength of ~420 MPa, which is 6.5 times better than natural basswood (~65 MPa). We systematically investigated the various factors affecting the tensile strength of this wood material and explored the reasons why these factors affect the tensile strength, as well as the intrinsic connection between the moisture absorbed through HPST and the increased tensile strength of HDDW. Through our experiments, we realized the enhancement mechanism of HDDW and the optimal experimental conditions for the fabrication of HDDW.

4.
Brain Commun ; 6(1): fcae006, 2024.
Article En | MEDLINE | ID: mdl-38250057

A target circle surrounded by small circles looks larger than an identical circle surrounded by large circles (termed as the Ebbinghaus illusion). While previous research has shown that both early and high-level visual regions are involved in the generation of the illusion, it remains unclear how these regions work together to modulate the illusion effect. Here, we used functional MRI and dynamic causal modelling to investigate the neural networks underlying the illusion in conditions where the focus of attention was manipulated via participants directing their attention to and maintain fixation on only one of the two illusory configurations at a time. Behavioural findings confirmed the presence of the illusion. Accordingly, functional MRI activity in the extrastriate cortex accounted for the illusory effects: apparently larger circles elicited greater activation than apparently smaller circles. Interestingly, this spread of activity for size overestimation was accompanied by a decrease in the inhibitory self-connection in the extrastriate region, and an increase in the feedback connectivity from the precuneus to the extrastriate region. These findings demonstrate that the representation of apparent object size relies on feedback projections from higher- to lower-level visual areas, highlighting the crucial role of top-down signals in conscious visual perception.

5.
Methods ; 222: 51-56, 2024 Feb.
Article En | MEDLINE | ID: mdl-38184219

The interaction between human microbes and drugs can significantly impact human physiological functions. It is crucial to identify potential microbe-drug associations (MDAs) before drug administration. However, conventional biological experiments to predict MDAs are plagued by drawbacks such as time-consuming, high costs, and potential risks. On the contrary, computational approaches can speed up the screening of MDAs at a low cost. Most computational models usually use a drug similarity matrix as the initial feature representation of drugs and stack the graph neural network layers to extract the features of network nodes. However, different calculation methods result in distinct similarity matrices, and message passing in graph neural networks (GNNs) induces phenomena of over-smoothing and over-squashing, thereby impacting the performance of the model. To address these issues, we proposed a novel graph representation learning model, dual-modal graph learning for microbe-drug association prediction (DMGL-MDA). It comprises a dual-modal embedding module, a bipartite graph network embedding module, and a predictor module. To assess the performance of DMGL-MDA, we compared it against state-of-the-art methods using two benchmark datasets. Through cross-validation, we illustrated the superiority of DMGL-MDA. Furthermore, we conducted ablation experiments and case studies to validate the effective performance of the model.


Benchmarking , Neural Networks, Computer , Humans , Research Design
7.
Int J Med Robot ; : e2616, 2023 Dec 22.
Article En | MEDLINE | ID: mdl-38131502

BACKGROUND: Remote-controlled robotic vascular interventional surgery can reduce radiation exposure to interventional physicians and improve safety. However, inconvenient operation and lack of force feedback limit its application. MATERIALS AND METHODS: A new wearable robotic system for vascular interventional surgery is designed, which is more flexible in operation. It ensures the safety of surgery through haptic force feedback. The system was evaluated by human vascular models and animal experiments. RESULTS: The average static error of the system is 0.048 mm when the axial motion is 250 mm and 1.259° when the rotational motion is 400°. The average error of the force feedback is 0.021 N. The results of vascular model experiments and animal experiments demonstrate the feasibility and safety of the system. CONCLUSIONS: The proposed robotic system can assist physicians in remotely delivering standard catheters or guidewires. The system is more flexible and uses haptic force feedback to ensure surgical safety.

8.
Front Pharmacol ; 14: 1241714, 2023.
Article En | MEDLINE | ID: mdl-38034988

Background: The sedative role of dexmedetomidine (DEX) in gastrointestinal endoscopic procedures is unclear. We performed this systematic review and meta-analysis to assess the efficacy and safety of sedation with DEX during gastrointestinal endoscopic procedures with a view to providing evidence-based references for clinical decision-making. Methods: The PubMed, Embase, Cochrane Library, Web of Science, and ClinicalTrials.gov databases were searched for randomized controlled trials (RCTs) that compared DEX with different sedatives comparators (such as propofol, midazolam, and ketamine) for sedation in a variety of adult gastrointestinal endoscopic procedures from inception to 1 July 2022. Standardized mean difference (SMD) and weighted mean difference (WMD) with 95% confidence interval (CI) or pooled risk ratios (RR) with 95% CI were used for continuous outcomes or dichotomous outcomes, respectively, and a random-effect model was selected regardless of the significance of the heterogeneity. Results: Forty studies with 2,955 patients were assessed, of which 1,333 patients were in the DEX group and 1,622 patients were in the control (without DEX) group. The results suggested that the primary outcomes of sedation level of DEX are comparable to other sedatives, with similar RSS score and patient satisfaction level, and better in some clinical outcomes, with a reduced risk of body movements or gagging (RR: 0.60; 95% CI: 0.37 to 0.97; p = 0.04; I2 = 68%), and a reduced additional requirement for other sedatives, and increased endoscopist satisfaction level (SMD: 0.41; 95% CI: 0.05 to 0.77; p = 0.03; I2 = 86%). In terms of secondary outcomes of adverse events, DEX may benefit patients in some clinical outcomes, with a reduced risk of hypoxia (RR:0.34; 95% CI: 0.20 to 0.55; p < 0.0001; I2 = 52%) and cough (RR: 0.25; 95% CI: 0.12 to 0.54; p = 0.0004; I2 = 0%), no significant difference in the risk of hypotension, while an increased risk of bradycardia (RR: 3.08; 95% CI: 2.12 to 4.48; p < 0.00001; I2 = 6%). Conclusion: This meta-analysis indicates that DEX is a safe and effective sedative agent for gastrointestinal endoscopy because of its benefits for patients in some clinical outcomes. Remarkably, DEX is comparable to midazolam and propofol in terms of sedation level. In conclusion, DEX provides an additional option in sedation for gastrointestinal endoscopic procedures. Systematic Review Registration: https://www.crd.york.ac.uk/PROSPERO/#searchadvanced.

10.
Front Pharmacol ; 14: 1219362, 2023.
Article En | MEDLINE | ID: mdl-37397499

Colorectal cancer (CRC) is the second leading cause of tumor-related deaths worldwide. Resistance of tumor cells to drug-induced apoptosis highlights the need for safe and effective antitumor alternatives. Erigeron breviscapus (Dengzhanxixin in China) injection (EBI), extracted from the natural herb Erigeron breviscapus (Vant.) Hand.-Mazz (EHM), has been widely used in clinical practice for cardiovascular diseases. Recent studies have suggested that EBI's main active ingredients exhibit potential antitumor effects. This study aims to explore the anti-CRC effect of EBI and elucidate the underlying mechanism. The anti-CRC effect of EBI was evaluated in vitro using CCK-8, flow cytometry, and transwell analysis, and in vivo through a xenograft mice model. RNA sequencing was utilized to compare the differentially expressed genes, and the proposed mechanism was verified through in vitro and in vivo experiments. Our study demonstrates that EBI significantly inhibits the proliferation of three human CRC cell lines and effectively suppresses the migration and invasion of SW620 cells. Moreover, in the SW620 xenograft mice model, EBI markedly retards tumor growth and lung metastasis. RNA-seq analysis revealed that EBI might exert antitumor effects by inducing necroptosis of tumor cells. Additionally, EBI activates the RIPK3/MLKL signaling pathway, a classical pathway of necroptosis and greatly promotes the generation of intracellular ROS. Furthermore, the antitumor effect of EBI on SW620 is significantly alleviated after the pretreatment of GW806742X, the MLKL inhibitor. Our findings suggest that EBI is a safe and effective inducer of necroptosis for CRC treatment. Notably, necroptosis is a non-apoptotic programmed cell death pathway that can effectively circumvent resistance to apoptosis, which provides a novel approach for overcoming tumor drug resistance.

11.
Antibodies (Basel) ; 12(3)2023 Jul 13.
Article En | MEDLINE | ID: mdl-37489369

Mucin1 (MUC1) is abnormally glycosylated and overexpressed in a variety of epithelial cancers and plays a critical role in tumor progression. MUC1 has received remark attention as an oncogenic molecule and is considered a valuable tumor target for immunotherapy, while many monoclonal antibodies (mAbs) targeting MUC1-positive cancers in clinical studies lack satisfactory results. It would be highly desirable to develop an effective therapy against MUC1-expressing cancers. In this study, we constructed a novel T cell-engaging bispecific antibody (BsAb) targeting MUC1 and CD3 with the Fab-ScFv-IgG format. A high quality of MUC1-CD3 BsAb can be acquired through a standard method. Our study suggested that this BsAb could specifically bind to MUC1- and CD3-positive cells and efficiently enhance T cell activation, cytokine release, and cytotoxicity. Furthermore, our study demonstrated that this BsAb could potently redirect T cells to eliminate MUC1-expressing tumor cells in vitro and significantly suppress MUC1-positive tumor growth in a xenograft mouse model. Thus, T cell-engaging MUC1/CD3 BsAb could be an effective therapeutic approach to combat MUC1-positive tumors and our MUC1/CD3 BsAb could be a promising candidate in clinical applications for the treatment of MUC1-positive cancer patients.

12.
Sensors (Basel) ; 23(10)2023 May 18.
Article En | MEDLINE | ID: mdl-37430779

Reversible data hiding in encrypted images (RDH-EI) is instrumental in image privacy protection and data embedding. However, conventional RDH-EI models, involving image providers, data hiders, and receivers, limit the number of data hiders to one, which restricts its applicability in scenarios requiring multiple data embedders. Therefore, the need for an RDH-EI accommodating multiple data hiders, especially for copyright protection, has become crucial. Addressing this, we introduce the application of Pixel Value Order (PVO) technology to encrypted reversible data hiding, combined with the secret image sharing (SIS) scheme. This creates a novel scheme, PVO, Chaotic System, Secret Sharing-based Reversible Data Hiding in Encrypted Image (PCSRDH-EI), which satisfies the (k,n) threshold property. An image is partitioned into N shadow images, and reconstruction is feasible when at least k shadow images are available. This method enables separate data extraction and image decryption. Our scheme combines stream encryption, based on chaotic systems, with secret sharing, underpinned by the Chinese remainder theorem (CRT), ensuring secure secret sharing. Empirical tests show that PCSRDH-EI can reach a maximum embedding rate of 5.706 bpp, outperforming the state-of-the-art and demonstrating superior encryption effects.

13.
Article En | MEDLINE | ID: mdl-37279128

Mixed noise pollution in HSI severely disturbs subsequent interpretations and applications. In this technical review, we first give the noise analysis in different noisy HSIs and conclude crucial points for programming HSI denoising algorithms. Then, a general HSI restoration model is formulated for optimization. Later, we comprehensively review existing HSI denoising methods, from model-driven strategy (nonlocal mean, total variation, sparse representation, low-rank matrix approximation, and low-rank tensor factorization), data-driven strategy 2-D convolutional neural network (CNN), 3-D CNN, hybrid, and unsupervised networks, to model-data-driven strategy. The advantages and disadvantages of each strategy for HSI denoising are summarized and contrasted. Behind this, we present an evaluation of the HSI denoising methods for various noisy HSIs in simulated and real experiments. The classification results of denoised HSIs and execution efficiency are depicted through these HSI denoising methods. Finally, prospects of future HSI denoising methods are listed in this technical review to guide the ongoing road for HSI denoising. The HSI denoising dataset could be found at https://qzhang95.github.io.

14.
Cyborg Bionic Syst ; 4: 0025, 2023.
Article En | MEDLINE | ID: mdl-37303861

The robot used for disaster rescue or field exploration requires the ability of fast moving on flat road and adaptability on complex terrain. The hybrid wheel-legged robot (WLR-3P, prototype of the third-generation hydraulic wheel-legged robot) has the characteristics of fast and efficient mobility on flat surfaces and high environmental adaptability on rough terrains. In this paper, 3 design requirements are proposed to improve the mobility and environmental adaptability of the robot. To meet these 3 requirements, 2 design principles for each requirement are put forward. First, for light weight and low inertia with high stiffness, 3-dimensional printing technology and lightweight material are adopted. Second, the integrated hydraulically driven unit is used for high power density and fast response actuation. Third, the micro-hydraulic power unit achieves power autonomy, adopting the hoseless design to strengthen the reliability of the hydraulic system. What is more, the control system including hierarchical distributed electrical system and control strategy is presented. The mobility and adaptability of WLR-3P are demonstrated with a series of experiments. Finally, the robot can achieve a speed of 13.6 km/h and a jumping height of 0.2 m.

15.
Front Plant Sci ; 14: 1157145, 2023.
Article En | MEDLINE | ID: mdl-37346123

Intraorganismal genetic heterogeneity (IGH) exists when an individual organism harbors more than one genotype among its cells. In general, intercellular DNA diversity occurs at a very low frequency and cannot be directly detected by DNA sequencing from bulk tissue. In this study, based on Sanger and high-throughput sequencing, different species, different organs, different DNA segments and a single cell were employed to characterize nucleotide mutations in Leymus chinensis. The results demonstrated that 1) the nuclear DNA showed excessive genetic heterogeneity among cells of an individual leaf or seed but the chloroplast genes remained consistent; 2) a high density of SNPs was found in the variants of the unique DNA sequence, and the similar SNP profile shared between the leaf and seed suggested that nucleotide mutation followed a certain rule and was not random; and 3) the mutation rate decreased from the genomic DNA sequence to the corresponding protein sequence. Our results suggested that Leymus chinensis seemed to consist of a collection of cells with different genetic backgrounds.

16.
Math Biosci Eng ; 20(5): 8685-8707, 2023 03 06.
Article En | MEDLINE | ID: mdl-37161217

Aiming at the problem that the model of YOLOv4 algorithm has too many parameters and the detection effect of small targets is poor, this paper proposes an improved helmet fitting detection model based on YOLOv4 algorithm. Firstly, this model improves the detection accuracy of small targets by adding multi-scale prediction and improving the structure of PANet network. Then, the improved depth-separable convolution was used to replace the standard 3 × 3 convolution, which greatly reduced the model parameters without reducing the detection ability of the model. Finally, the k_means clustering algorithm is used to optimize the prior box. The model was tested on the self-made helmet dataset helmet_dataset. Experimental results show that compared with the safety helmet detection model based on Faster RCNN algorithm, the improved YOLOv4 algorithm has faster detection speed, higher detection accuracy and smaller number of model parameters. Compared with the original YOLOv4 model, the mAP of the improved YOLOv4 algorithm is increased by 0.49%, reaching 93.05%. The number of model parameters was reduced by about 58%, to about 105 MB. The model reasoning speed is 35 FPS. The improved YOLOv4 algorithm can meet the requirements of helmet wearing detection in multiple scenarios.


Algorithms , Head Protective Devices , Cluster Analysis , Problem Solving
17.
Am J Transl Res ; 15(4): 2585-2597, 2023.
Article En | MEDLINE | ID: mdl-37193164

OBJECTIVE: This study seeks to assess the efficacy of exfoliated colonocytes isolated from feces (ECIF) miR-92a as a clinical colorectal cancer diagnostic marker in a larger cohort. METHODS: Clinicopathologic data from colorectal cancer patients and health controls that underwent colonoscopy, as well as patients of other cancers diagnosed, were included. A total of 963 Chinese participants were enrolled, with 292 (27.4%) having colorectal cancer, 140 (14.5%) having other types of cancer, e.g., pancreatic, liver, oral, bile duct, esophagus, and stomach cancer, 171 (17.8%) having infection in the intestine, rectal, stomach, appendix, and gastrointestinal ulcer, and 360 (37.4%) of healthy controls. ECIF samples were gathered and miR-92a levels were detected using TaqMan probe-based miR-92a real-time quantitative PCR (RT-qPCR) kit developed by Shenzhen GeneBioHealth Co., Ltd. RESULTS: Through a series of experiments, we demonstrated that the Ep-LMB/Vi-LMB magnetic separation system is feasible, highly specific, and highly sensitive at a cutoff value of 1053 copies per 6 ng of ECIF RNA. ECIF miR-92a levels were significantly higher in colorectal cancer patients than in controls. Colorectal cancer detection sensitivity and specificity were 87.3% and 86.9% respectively. Furthermore, the performance of this miR-92a detection kit demonstrated that it is an effective tool for colorectal cancer, with a high sensitivity of 84.1%, even in early cancer stages (0, I, and II). Furthermore, tumor removal resulted in lower stool miR-92a levels (3.21±0.58 vs. 2.14±1.14, P < 0.0001, n = 65). CONCLUSION: Finally, the miR-92a RT-qPCR kit detects ECIF-increased miR-92a and could be used for colorectal cancer screening.

18.
Med Biol Eng Comput ; 61(6): 1365-1380, 2023 Jun.
Article En | MEDLINE | ID: mdl-36705768

At present, most vascular intervention robots cannot cope with the more common coronary complex lesions in the clinic. Moreover, the lack of effective force feedback increases the risk of surgery. In this paper, a vascular interventional robot that can collaboratively deliver multiple interventional instruments has been developed to assist doctors in the operation of complex lesions. Based on the doctor's skills and the delivery principle of interventional instruments, the main and slave manipulators of the robot system are designed. Haptic force feedback is generated through resistance measuring mechanism and active drag system. In addition, a force feedback control strategy based on force-velocity mapping is proposed to realize the continuous change of force and avoid vibration. The proposed robot system was evaluated through a series of experiments. The experimental results show that the system can accurately measure the delivery resistance of interventional instruments, and provide haptic force feedback to doctors. The capability of the system to collaboratively deliver multiple interventional instruments is effective. Therefore, it can be considered that the robot system is feasible and effective.


Robotic Surgical Procedures , Robotics , Coronary Vessels , Equipment Design , Mechanical Phenomena , Feedback
19.
Skin Res Technol ; 29(1): e13269, 2023 Jan.
Article En | MEDLINE | ID: mdl-36704881

BACKGROUND: Acne is the eighth-most prevalent inflammatory skin disease with no optimal treatment. Photodynamic therapy (PDT) is an effective treatment for severe acne. AIMS: The effect of PDT on the composition and diversity of skin microflora in severe acne patients was studied. MATERIALS AND METHODS: A total of 18 patients with severe acne and 8 healthy individuals were selected for this study. Patients were treated with 5-aminolevulinic acid-mediated PDT once a week three times in total; the skin microbiome was measured by 16S ribosomal RNA gene sequencing before and after treatment (1 week after each PDT). RESULTS: The microflora composition was different between healthy controls and patients, and between patients before and after treatment. Alpha diversity indices were lower in patients than those in control. There were 15 bacterial genera with high relative abundance that had noticeable changes during treatment. At the genus level,particularly Cutibacterium acnes (C. acnes formerly Propionibacterium acnes), there was no statistically significant difference among different group. The abundances of Staphylococcus epidermidis and Staphylococcus aureus were low. DISCUSSION: The microbial composition is different between severe acne patients acne patients and healthy individuals. The therapeutic efficacy of severe acne treated with PDT is associated with the composition and diversity of skin microbiota. CONCLUSION: The skin microbial composition changes after PDT treatment. PDT is an effective method for the treatment of severe acne.


Acne Vulgaris , Microbiota , Photochemotherapy , Humans , Acne Vulgaris/drug therapy , Skin/microbiology , Aminolevulinic Acid/therapeutic use , Aminolevulinic Acid/pharmacology , Propionibacterium acnes/genetics , Photochemotherapy/adverse effects
20.
Biomater Sci ; 11(1): 153-161, 2022 Dec 20.
Article En | MEDLINE | ID: mdl-36385648

The immune response of macrophages plays an important role in defending against viral infection, tumor deterioration and repairing of contused tissue. Macrophage functional differentiation induced by nanodrugs is the leading edge of current research, but nanodrugs have toxic side effects, and the influence of their physical properties on macrophages is not clear. Here we create an alternative way to modulate macrophage function through PLGA-PEG fibers' Young's modulus. Previously, we revealed that by controlling the Young's modulus of the fibers from kPa to MPa, all the fibers entered murine macrophage cells (RWA 264.7) in a similar manner, and based on that, we found that macrophages' mechanical properties were affected by the fibers' Young's modulus, that is, hard fibers with a Young's modulus of ∼1 MPa increased the cell average Young's modulus, but did not affect the cell shape, while soft fibers with a Young's modulus of ∼100 kPa decreased the cell average Young's modulus and modulated the cell shape to a more spherical one. On the other hand, only the soft fibers induced proinflammatory cytokine secretion, indicating an M1 macrophage functional modulation by low Young's modulus fibers. This study explored the mechanical properties of the interactions between PLGA-PEG fibers and cells, in particular, when guiding the direction of the modulation of macrophage function, which is of great significance for the applications of material biology in the biomedical field.


Elastic Modulus , Macrophages , Animals , Mice , Macrophages/immunology
...