Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 79
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ChemSusChem ; 17(6): e202400204, 2024 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-38369946

RESUMEN

Invited for this issue's cover is the group of Huilei Yu at the East China University of Science and Technology. The image shows a sustainable biosynthesis route to nylon monomers from bio-based substrate α, ω-dicarboxylic acids. The Research Article itself is available at 10.1002/cssc.202301477.


Asunto(s)
Diaminas , Ácidos Grasos , Aminoácidos , China
2.
Biotechnol Bioeng ; 121(3): 971-979, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38088450

RESUMEN

The methylotrophic yeast Pichia pastoris (Komagataella phaffii) is a highly distinguished expression platform for the excellent synthesis of various heterologous proteins in recent years. With the advantages of high-density fermentation, P. pastoris can produce gram amounts of recombinant proteins. While not every protein of interest can be expressed to such high titers, such as Baeyer-Villiger monooxygenase (BVMO) (AcPSMO) which is responsible for pyrazole sulfide asymmetric oxidation. In this work, an excellent yeast expression system was established to facilitate efficient AcPSMO expression, which exhibited 9.5-fold enhanced secretion. Subsequently, an ultrahigh throughput screening method based on fluorescence-activated cell sorting by fusing super folder green fluorescent protein (sfGFP) in the C-terminal of AcPSMO was developed, and directed evolution was performed. The protein expression level of the superior mutant AcPSMOP1 (S58T/T252P/E336N/H456D) reached 84.6 mg/L at 100 mL shaking flask, which was 4.7 times higher than the levels obtained with the wild-type. Finally, the optimized chassis cells were used for high-density fermentation on a 5-L scale, and AcPSMOP1 protein yield of 3.4 g/L was achieved, representing approximately 85% of the total protein secreted. By directly employing the pH-adjusted supernatant as a biocatalyst, 20 g/L pyrmetazole sulfide was completely transformed into the corresponding (S)-sulfoxide, with a 78.8% isolated yield. This work confers dramatic benefits for efficient secretion of other BVMOs in P. pastoris.


Asunto(s)
Oxigenasas de Función Mixta , Pichia , Saccharomycetales , Oxigenasas de Función Mixta/metabolismo , Pichia/genética , Pichia/metabolismo , Proteínas Recombinantes/metabolismo , Sulfóxidos/metabolismo , Sulfuros/metabolismo
3.
ChemSusChem ; 17(6): e202301477, 2024 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-38117609

RESUMEN

Aliphatic ω-amino fatty acids (ω-AFAs) and α,ω-diamines (α,ω-DMs) are essential monomers for the production of nylons. Development of a sustainable biosynthesis route for ω-AFAs and α,ω-DMs is crucial in addressing the challenges posed by climate change. Herein, we constructed an unprecedented thermodynamically favorable multi-enzyme cascade (TherFavMEC) for the efficient sustainable biosynthesis of ω-AFAs and α,ω-DMs from cheap α,ω-dicarboxylic acids (α,ω-DAs). This TherFavMEC was developed by incorporating bioretrosynthesis analysis tools, reaction Gibbs free energy calculations, thermodynamic equilibrium shift strategies and cofactor (NADPH&ATP) regeneration systems. The molar yield of 6-aminohexanoic acid (6-ACA) from adipic acid (AA) was 92.3 %, while the molar yield from 6-ACA to 1,6-hexanediamine (1,6-HMD) was 96.1 %, which were significantly higher than those of previously reported routes. Furthermore, the biosynthesis of ω-AFAs and α,ω-DMs from 20.0 mM α,ω-DAs (C6-C9) was also performed, giving 11.2 mM 1,6-HMD (56.0 % yield), 14.8 mM 1,7-heptanediamine (74.0 % yield), 17.4 mM 1,8-octanediamine (87.0 % yield), and 19.7 mM 1,9-nonanediamine (98.5 % yield), respectively. The titers of 1,9-nonanediamine, 1,8-octanediamine, 1,7-heptanediamine and 1,6-HMD were improved by 328-fold, 1740-fold, 87-fold and 3.8-fold compared to previous work. Therefore, this work holds great potential for the bioproduction of ω-AFAs and α,ω-DMs.


Asunto(s)
Aminoácidos , Diaminas , Ácidos Dicarboxílicos , Ácidos Grasos
4.
Chem Commun (Camb) ; 59(98): 14571-14574, 2023 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-37987314

RESUMEN

Baeyer-Villiger monooxygenases (BVMOs) are able to catalyse the asymmetric oxidation of sulfides. This property has made them attractive catalysts for the synthesis of chiral sulfoxide drugs. Here, we have designed and synthesised an exhaustive combinatorial mutant library of the previously identified lansoprazole sulfide monooxygenase CbBVMOV1. From this synthetic combinatorial mutant library, the best mutant, CbBVMOV3, was selected with a specific activity of approximately 1 U mg-1 for lansoprazole sulfoxides. We then optimised the reaction conditions of a two-phase system, achieving the enzymatic asymmetric synthesis of (R)-lansoprazole in a space-time yield of 213 g L-1 d-1 and an enantiomeric excess of >99% (R) with no detectable by-products. In addition, CbBVMOV3 showed higher activity towards other prazole sulfides. These results indicate the potential application of CbBVMO in the chiral sulfoxide drug industry.


Asunto(s)
Oxigenasas de Función Mixta , Sulfóxidos , Oxigenasas de Función Mixta/metabolismo , Oxidación-Reducción , Sulfuros , Lansoprazol
5.
Biochemistry ; 62(22): 3214-3221, 2023 11 21.
Artículo en Inglés | MEDLINE | ID: mdl-37902563

RESUMEN

Cytochrome P450 monooxygenases (CYP450s) play an important role in the biosynthesis of natural products by activating inert C-H bonds and inserting hydroxyl groups. However, the activities of most plant-derived CYP450s are extremely low, limiting the heterologous biosynthesis of natural products. Traditional enzyme engineering methods, either rational or screening-based, are not suitable for CYP450s because of the lack of crystal structures and high-throughput screening methods for this class of enzymes. CYP725A4 is the first hydroxylase involved in the biosynthesis pathway of Taxol. Its low activity, promiscuity, and multispecificity make it a bottleneck in Taxol biosynthesis. Here, we identified key amino acids that affect the in vivo activity of CYP725A4 by constructing the ancestral enzymes of CYP725A4. We obtained positive mutants that showed an improved yield of hydroxylated products based on the key amino acids identified, providing guidance for the modification of other CYP450s involved in the biosynthesis of natural products.


Asunto(s)
Aminoácidos , Productos Biológicos , Aminoácidos/genética , Sistema Enzimático del Citocromo P-450/metabolismo , Paclitaxel/química , Paclitaxel/metabolismo
6.
Chembiochem ; 24(23): e202300582, 2023 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-37728423

RESUMEN

(R)-ß-piperonyl-γ-butyrolactones are key building blocks for the synthesis of podophyllotoxin, which have demonstrated remarkable potential in cancer treatment. Baeyer-Villiger monooxygenases (BVMOs)-mediated asymmetric oxidation is a green approach to produce chiral lactones. While several BVMOs were able to oxidize the corresponding cyclobutanone, most BVMOs gave the (S) enantiomer while Cyclohexanone monooxygenase (CHMO) from Brevibacterium sp. HCU1 gave (R) enantiomer, but with a low enantioselectivity (75 % ee). In this study, we use a strategy called "focused rational iterative site-specific mutagenesis" (FRISM) at residues ranging from 6 Šfrom substrate. The mutations by using a restricted set of rationally chosen amino acids allow the formation of a small mutant library. By generating and screening less than 60 variants, we achieved a high ee of 96.8 %. Coupled with the cofactor regeneration system, 9.3 mM substrate was converted completely in a 100-mL scale reaction. Therefore, our work reveals a promising synthetic method for (R)-ß-piperonyl-γ-butyrolactone with the highest enantioselectivity, and provides a new opportunity for the chem-enzymatic synthesis of podophyllotoxin.


Asunto(s)
Oxigenasas , Podofilotoxina , Oxigenasas/metabolismo , Oxigenasas de Función Mixta/metabolismo , Oxidación-Reducción , Especificidad por Sustrato
7.
Adv Sci (Weinh) ; 10(26): e2303650, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37424038

RESUMEN

In clinical practice, repairing osteochondral defects presents a challenge due to the varying biological properties of articular cartilages and subchondral bones. Thus, elucidating how spatial microenvironment-specific biomimetic scaffolds can be used to simultaneously regenerate osteochondral tissue is an important research topic. Herein, a novel bioinspired double-network hydrogel scaffold produced via 3D printing with tissue-specific decellularized extracellular matrix (dECM) and human adipose mesenchymal stem cell (MSC)-derived exosomes is described. The bionic hydrogel scaffolds promote rat bone marrow MSC attachment, spread, migration, proliferation, and chondrogenic and osteogenic differentiation in vitro, as determined based on the sustained release of bioactive exosomes. Furthermore, the 3D-printed microenvironment-specific heterogeneous bilayer scaffolds efficiently accelerate the simultaneous regeneration of cartilage and subchondral bone tissues in a rat preclinical model. In conclusion, 3D dECM-based microenvironment-specific biomimetics encapsulated with bioactive exosomes can serve as a novel cell-free recipe for stem cell therapy when treating injured or degenerative joints. This strategy provides a promising platform for complex zonal tissue regeneration whilst holding attractive clinical translation potential.


Asunto(s)
Exosomas , Andamios del Tejido , Ratas , Humanos , Animales , Osteogénesis , Hidrogeles , Cartílago , Regeneración Ósea , Impresión Tridimensional
8.
Bioengineering (Basel) ; 10(7)2023 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-37508808

RESUMEN

Therapeutic strategies based on utilizing endogenous BMSCs have been developed for the regeneration of bone, cartilage, and ligaments. We previously found that E7 peptide (EPLQLKM) could enhance BMSC homing in bio-scaffolds and, therefore, promote cartilage regeneration. However, the profile and mechanisms of E7 peptide in cartilage regeneration remain elusive. In this study, we examined the effect of E7 peptide on the BMSC phenotype, including adhesion, viability and chondrogenic differentiation, and its underlying mechanism. The konjac glucomannan microsphere (KGM), a carrier material that is free of BMSC adhesion ability, was used as the solid base of E7 peptide to better explore the independent role of E7 peptide in BMSC behavior. The results showed that E7 peptide could support BMSC adhesion and viability in a comparable manner to RGD and promote superior chondrogenic differentiation to RGD. We examined differentially expressed genes of BMSCs induced by E7 compared to RGD. Subsequently, a real-time PCR validated the significantly upregulated expression of lncRNA H19, and the knockdown of lncRNA H19 or miR675, a downstream functional unit of H19, could significantly obscure the chondrogenic differentiation induced by E7. In conclusion, this study confirmed the independent role of E7 in the adhesion and viability of BMSCs and revealed the pro-chondrogenic effect of E7 on BMSCs via the H19/miR675 axis. These results could help establish new therapeutic strategies based on employing endogenous BMSCs for cartilage tissue regeneration.

9.
Chembiochem ; 24(20): e202300390, 2023 10 17.
Artículo en Inglés | MEDLINE | ID: mdl-37455264

RESUMEN

Nicotinamide adenine dinucleotide (NADH) and nicotinamide adenine dinucleotide phosphate (NADPH) constitute major hydrogen donors for oxidative/reductive bio-transformations. NAD(P)H regeneration systems coupled with formate dehydrogenases (FDHs) represent a dreamful method. However, most of the native FDHs are NAD+ -dependent and suffer from insufficient reactivity compared to other enzymatic tools, such as glucose dehydrogenase. An efficient and competitive NADP+ -utilizing FDH necessitates the availability and robustness of NADPH regeneration systems. Herein, we report the engineering of a new FDH from Candida dubliniensis (CdFDH), which showed no strict NAD+ preference by a structure-guided rational/semi-rational design. A combinatorial mutant CdFDH-M4 (D197Q/Y198R/Q199N/A372S/K371T/▵Q375/K167R/H16L/K159R) exhibited 75-fold intensification of catalytic efficiency (kcat /Km ). Moreover, CdFDH-M4 has been successfully employed in diverse asymmetric oxidative/reductive processes with cofactor total turnover numbers (TTNs) ranging from 135 to 986, making it potentially useful for NADPH-required biocatalytic transformations.


Asunto(s)
Formiato Deshidrogenasas , NAD , NADP/metabolismo , NAD/metabolismo , Formiato Deshidrogenasas/genética , Formiato Deshidrogenasas/metabolismo , Ingeniería de Proteínas/métodos , Oxidación-Reducción
10.
Appl Microbiol Biotechnol ; 107(18): 5727-5737, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37477695

RESUMEN

Cytochrome P450 monooxygenases CYP120As are the unique non-membrane P450s, which are extensively involved in retinoid biodegradation. As the O-functionalized 1,3,3-trimethylcyclohex-1-ene moiety exists in many bioactive compounds which could only be catalyzed by Class II P450s, exploration of the catalytic repertoire of CYP120As is therefore highly attractive. However, up to date, only one bacteriogenic candidate (CYP120A1) was demonstrated for the hydroxylation of C16 and C17 of retinoic acid, by utilizing the integral membrane protein cytochrome P450 reductase redox partner for the electron transfer. Herein, we provided an efficient prokaryotic functional expression system of CYP120As in E. coli by expression of the CYP120A1 coupled with several reductase partners. Fusion redox partners to the C-terminal of the heme-domain are also working on other CYP120A members. Among them, the fusion protein of CYP120A29 and FAD/FMN reductase from Bacillus megaterium P450BM3 (CYP101A2) showed the highest expression level. Based on the available translational fusion systems, the regioselectivity and the substrate scope of the CYP120As have also been explored. This work represents a good starting point for further expanding the catalytic potential of CYP120 family. KEY POINTS: • Characterization of CYP120As in E. coli is firstly achieved by constructing fusion proteins. • The feasibility of three P450 reductase domains to CYP120As was evaluated. • Hydroxylated products of retinoic acid by six CYP120As were sorted and analyzed.


Asunto(s)
Proteínas Bacterianas , Escherichia coli , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas Bacterianas/metabolismo , Oxidación-Reducción , Transporte de Electrón , NADPH-Ferrihemoproteína Reductasa/genética , NADPH-Ferrihemoproteína Reductasa/metabolismo , Tretinoina/metabolismo
11.
Sheng Wu Gong Cheng Xue Bao ; 39(6): 2158-2189, 2023 Jun 25.
Artículo en Chino | MEDLINE | ID: mdl-37401588

RESUMEN

The synthesis of fine chemicals using multi-enzyme cascade reactions is a recent hot research topic in the field of biocatalysis. The traditional chemical synthesis methods were replaced by constructing in vitro multi-enzyme cascades, then the green synthesis of a variety of bifunctional chemicals can be achieved. This article summarizes the construction strategies of different types of multi-enzyme cascade reactions and their characteristics. In addition, the general methods for recruiting enzymes used in cascade reactions, as well as the regeneration of coenzyme such as NAD(P)H or ATP and their application in multi-enzyme cascade reactions are summarized. Finally, we illustrate the application of multi-enzyme cascades in the synthesis of six bifunctional chemicals, including ω-amino fatty acids, alkyl lactams, α, ω-dicarboxylic acids, α, ω-diamines, α, ω-diols, and ω-amino alcohols.


Asunto(s)
Aminoácidos , Amino Alcoholes , Biocatálisis , Coenzimas/metabolismo , Diaminas
12.
Biotechnol Bioeng ; 120(7): 1773-1783, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37130074

RESUMEN

The key precursors for nylon synthesis, that is, 6-aminocaproic acid (6-ACA) and 1,6-hexamethylenediamine (HMD), are produced from petroleum-based feedstocks. A sustainable biocatalytic alternative method from bio-based adipic acid has been demonstrated recently. However, the low efficiency and specificity of carboxylic acid reductases (CARs) used in the process hampers its further application. Herein, we describe a highly accurate protein structure prediction-based virtual screening method for the discovery of new CARs, which relies on near attack conformation frequency and the Rosetta Energy Score. Through virtual screening and functional detection, five new CARs were selected, each with a broad substrate scope and the highest activities toward various di- and ω-aminated carboxylic acids. Compared with the reported CARs, KiCAR was highly specific with regard to adipic acid without detectable activity to 6-ACA, indicating a potential for 6-ACA biosynthesis. In addition, MabCAR3 had a lower Km with regard to 6-ACA than the previously validated CAR MAB4714, resulting in twice conversion in the enzymatic cascade synthesis of HMD. The present work highlights the use of structure-based virtual screening for the rapid discovery of pertinent new biocatalysts.


Asunto(s)
Ácido Aminocaproico , Oxidorreductasas , Oxidorreductasas/metabolismo , Adipatos
13.
Bioact Mater ; 22: 274-290, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36263097

RESUMEN

Spinal cord injury (SCI) is a serious clinical disease. Due to the deformability and fragility of the spinal cord, overly rigid hydrogels cannot be used to treat SCI. Hence, we used TPA and Laponite to develop a hydrogel with shear-thinning ability. This hydrogel exhibits good deformation, allowing it to match the physical properties of the spinal cord; additionally, this hydrogel scavenges ROS well, allowing it to inhibit the lipid peroxidation caused by ferroptosis. According to the in vivo studies, the TPA@Laponite hydrogel could synergistically inhibit ferroptosis by improving vascular function and regulating iron metabolism. In addition, dental pulp stem cells (DPSCs) were introduced into the TPA@Laponite hydrogel to regulate the ratios of excitatory and inhibitory synapses. It was shown that this combination biomaterial effectively reduced muscle spasms and promoted recovery from SCI.

14.
Bioresour Bioprocess ; 10(1): 39, 2023 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-38647640

RESUMEN

Terpenoids are pervasive in nature and display an immense structural diversity. As the largest category of plant secondary metabolites, terpenoids have important socioeconomic value in the fields of pharmaceuticals, spices, and food manufacturing. The biosynthesis of terpenoid skeletons has made great progress, but the subsequent modifications of the terpenoid framework are poorly understood, especially for the functionalization of inert carbon skeleton usually catalyzed by hydroxylases. Hydroxylase is a class of enzymes that plays an important role in the modification of terpenoid backbone. This review article outlines the research progress in the identification, molecular modification, and functional expression of this class of enzymes in the past decade, which are profitable for the discovery, engineering, and application of more hydroxylases involved in the plant secondary metabolism.

15.
Chembiochem ; 23(16): e202200228, 2022 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-35639013

RESUMEN

Baeyer-Villiger monooxygenases (BVMOs) are important biocatalysts for the enzymatic synthesis of chiral sulfoxides, including chiral sulfoxide-type proton pump inhibitors for the treatment of gastrointestinal diseases. However, native BVMOs are not yet suitable for practical application due to their unsatisfactory activity and thermostability. Although protein engineering approaches can help address these issues, few feasible high-throughput methods are available for the engineering of such enzymes. Herein, a colorimetric detection method to distinguish sulfoxides from sulfides and sulfones was developed for prazole sulfide monooxygenases. Directed evolution enabled by this method has identified a prazole sulfide monooxygenase CbBVMO variant with improved activity and thermostability that catalyzes the asymmetric oxidation of lansoprazole sulfide. A 71.3 % increase in conversion and 6 °C enhancement in the melting point were achieved compared with the wild-type enzyme. This new method is feasible for high-throughput screening of prazole sulfide monooxygenase variants with improved activity, thermostability, and/or substrate specificity.


Asunto(s)
Ensayos Analíticos de Alto Rendimiento , Oxigenasas de Función Mixta , Biocatálisis , Colorimetría , Oxigenasas de Función Mixta/genética , Oxigenasas de Función Mixta/metabolismo , Oxidación-Reducción , Especificidad por Sustrato , Sulfuros/metabolismo , Sulfóxidos/metabolismo
16.
J Agric Food Chem ; 70(19): 5860-5868, 2022 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-35506591

RESUMEN

Penicillium expansum, producer of a wide array of secondary metabolites, has the potential to be a source of new terpene synthases. In this work, a platform was constructed with Escherichia coli BL21(DE3) by enhancing its endogenous 2-methyl-d-erythritol-4-phosphate pathway to supply sufficient terpenoid precursors. Using this precursor-supplying platform, we discovered two sesquiterpene synthases from P. expansum: PeTS1, a new (+)-aristolochene synthase, and PeTS4, the first microbial (+)-bicyclogermacrene synthase. To enhance the sesquiterpene production by PeTS1, we employed a MBP fusion tag to improve the heterologous protein expression, resulting in the increase of aristolochene production up to 50 mg/L in a 72 h flask culture, which is the highest production reported to date. We also realized the first biosynthesis of (+)-bicyclogermacrene, achieving 188 mg/L in 72 h. This work highlights the great potential of this microbial platform for the discovery of new terpene synthases and opens new ways for the bioproduction of other valuable terpenoids.


Asunto(s)
Transferasas Alquil y Aril , Sesquiterpenos , Transferasas Alquil y Aril/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Penicillium , Sesquiterpenos/metabolismo , Terpenos/metabolismo
17.
Bioact Mater ; 8: 505-514, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34541416

RESUMEN

Although advances in protein assembly preparation have provided a new platform for drug delivery during tissue engineering, achieving long-term controlled exosome delivery remains a significant challenge. Diffusion-dominated exosome release using protein hydrogels results in burst release of exosomes. Here, a fibroin-based cryo-sponge was developed to provide controlled exosome release. Fibroin chains can self-assemble into silk I structures under ice-cold conditions when annealed above the glass transition temperature. Exosome release is enzyme-responsive, with rates primarily determined by enzymatic degradation of the scaffolds. In vivo experiments have demonstrated that exosomes remain in undigested sponge material for two months, superior to their retention in fibrin glue, a commonly used biomaterial in clinical practice. Fibroin cryo-sponges were implanted subcutaneously in nude mice. The exosome-containing sponge group exhibited better neovascularization and tissue ingrowth effects, demonstrating the efficacy of this exosome-encapsulating strategy by realizing sustained release and maintaining exosome bioactivity. These silk fibroin cryo-sponges containing exosomes provide a new platform for future studies of exosome therapy.

18.
Bioresour Bioprocess ; 9(1): 82, 2022 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-38647602

RESUMEN

Paclitaxel (Taxol™), an alkaloid of diterpenoid family, is one of the most widely used anti-cancer drugs due to its effectiveness against a variety of tumors. Rather than directly extraction and chemical synthesis of paclitaxel or its intermediates from yew plants, construction of a microbial cell factory for paclitaxel biosynthesis will be more efficient and sustainable. The challenge for biosynthesis of paclitaxel lies on the insufficient precursor, such as taxadien-5α-ol. In this study, we report a recombinant Escherichia coli strain constructed with a heterologous mevalonate pathway, a taxadiene synthase from yew, and a cytochrome P450-mediated oxygenation system for the de novo production of taxadien-5α-ol, the first product of the multi-step taxadiene oxygenation metabolism. The key enzymes including taxadiene synthases and cytochrome P450 reductases were screened, and the linker for fusing taxadiene-5α-hydroxylase with its reductase partner cytochrome P450 reductase was optimized. By reducing the metabolic burden and optimizing the fermentation conditions, the final production of total oxygenated taxanes was raised up to 27 mg L-1 in a 50-mL flask cultivation, of which the yield of taxadien-5α-ol was 7.0 mg L-1, representing approximately a 12-fold and 23-fold improvements, respectively, as compared with the initial titers. The engineered MVA pathway for the overproduction of terpenoid precursors can serve as an efficient platform for the production of other valuable terpenoids.

19.
Acta Biomater ; 131: 262-275, 2021 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-34157451

RESUMEN

Decellularized extracellular matrix (dECM) hydrogels are being increasingly investigated for use in bio-inks for three-dimensional cell printing given their good cytocompatibility and biomimetic properties. The osmotic pressure and stiffness of bio-ink are important factors affecting the biological functions of printed cells. However, little attention has been given to the osmotic pressure and stiffness of the dECM bio-inks. Here, we compared three types of commonly used acidic solutions in the bio-fabrication of a tendon derived dECM bio-ink for 3D cell printing (0.5 M acetic acid, 0.1 M hydrochloric acid and 0.02 M hydrochloric acid). We found that low pH value of 0.1 M hydrochloric acid could accelerate the digestion process for dECM powders. This could lead to a much softer dECM hydrogel with storage modulus less than 100 Pa. This soft dECM hydrogel facilitated the spreading and proliferation of stem cells encapsulated within it. It also showed better tendon-inducing ability compared with two others much stiffer dECM hydrogels. However, this over-digested dECM hydrogel was more unstable as it could shrink with the culture time going on. For 0.5 M acetic acid made dECM bio-ink, the hyperosmotic state of the bio-ink led to much lower cellular viability rates. Postprocess (Dilution or dialysis) to tailor the osmotic pressure of hydrogels could be a necessary step before mixed with cells. Thus, kindly choosing the type and concentration of acidic solution is necessary for dECM bio-ink preparation. And a balance should be made between the digestion period, strength of acidic solution, as well as the size and concentration of the dECM powders. STATEMENT OF SIGNIFICANCE: The dECM bio-ink has been widely used in 3D cell printing for tissue engineering and organ modelling. In this study, we found that different types of acid have different digestion and dissolution status for the dECM materials. A much softer tendon derived dECM hydrogel with lower stiffness could facilitate the cellular spreading, proliferation and tendon differentiation. We also demonstrated that the osmotic pressure should be taken care of in the preparation of dECM bio-ink with 0.5 M acetic acid. Thus, kindly choosing the type and concentration of acidic solution is necessary for dECM bio-ink preparation.


Asunto(s)
Matriz Extracelular , Tinta , Hidrogeles/farmacología , Impresión Tridimensional , Tendones , Ingeniería de Tejidos , Andamios del Tejido
20.
ACS Biomater Sci Eng ; 7(3): 916-925, 2021 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-33715368

RESUMEN

The development of 3D printing techniques has provided a promising platform to study tissue engineering and mechanobiology; however, the pursuit of printability limits the possibility of tailoring scaffolds' mechanical properties. The brittleness of those scaffolds also hinders potential clinical application. To overcome these drawbacks, a double-network ink composed of only natural biomaterials is developed. A shear-thinning hydrogel made of silk fibroin (SF) and methacrylated hyaluronic acid (MAHA) presents a high mechanical modulus with a low concentration of macromers. The physical cross-linking due to protein folding further increases the strength of the scaffolds. The proposed SF/MAHA scaffold exhibits a storage modulus 10 times greater than that of methacrylated gelatin scaffold, along with better flexibility and biodegradation. The synergistic effect between fibroin and hyaluronic allows us to tailor the mechanical strength of scaffolds without compromising their printability. The hierarchy porous structure of the SF/MAHA scaffolds offers a better spatial microenvironment for the migration and proliferation of cells compared to gelatin scaffolds. For the first time, this strategy achieves 3D printing of natural biomaterials with controlled mechanical characteristics by manipulating the cross-linking of peptide chains. The design of such ductile scaffolds with hydrolysis resistance provides a new platform for the mechanobiology research. It also shows promise in the tissue engineering of musculoskeletal system where structural strength is needed.


Asunto(s)
Fibroínas , Materiales Biocompatibles , Impresión Tridimensional , Ingeniería de Tejidos , Andamios del Tejido
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...