Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 2 de 2
1.
Heliyon ; 10(5): e27255, 2024 Mar 15.
Article En | MEDLINE | ID: mdl-38463815

The hybrid power system with dual motors and multiple clutches experiences significant torque fluctuation during mode switching process due to the different torque response characteristics of the motor and engine. To address this issue, this paper focuses on the estimation of clutch friction torque and the development of dynamic coordinated control strategies for the components. Firstly, based on the dynamic model of the novel dual-motor hybrid electric vehicle, a torque observer based on the Kalman filter algorithm is developed to predict the friction torque generated in the clutch sliding friction stage. Secondly, the control strategies are developed for the mode switching process from single-motor to dual-motor and from dual-motor to parallel drive on a co-simulation platform. Thirdly, a power level Hardware-In-the-Loop test platform is built, and the performance of the designed control strategies is verified by the HIL platform. The results show that for the mode switching process from dual-motor to parallel drive, compared with the control strategy using the engine target speed, the control strategy based on engine idle speed proposed in this paper reduces the clutch sliding friction work and the maximum longitudinal jerk of the vehicle by 42.5% and 25.4%, respectively.

2.
RSC Adv ; 12(45): 29246-29252, 2022 Oct 11.
Article En | MEDLINE | ID: mdl-36320753

Supercapacitors have a rapid charge/discharge rate, long lifespan, high stability, and relatively acceptable cost, showing great potential in energy storage and conversion applications. However, the current cost-effective carbon-based electrodes have limited application owing to their low specific capacitance and unsatisfactory stability. In this regard, we herein prepare nitrogen-doped carbons by carbonizing a mixture of cotton pulp (CCP) and melamine to improve the specific capacitance by integrating pore (mesopore) and surface (oxygen-containing groups) modification with defect engineering via the carbonization process. Furthermore, the structural and morphological features of the resultant nitrogen-doped carbons are confirmed by various characterization techniques. Excitingly, the specific capacitance for nitrogen-doped CCP (CCPN1) with a 1 : 1 weight ratio of CCP and melamine is 642 F g-1 at a current density of 0.5 A g-1 in a three-electrode system, surpassing that of the reported carbon analogues and most metal-based materials to date. The stability test suggests that the specific capacitance of CCPN1 is maintained over 150 F g-1 at a current density of 2 A g-1 even over 5000 cycles. Therefore, the reported nitrogen-doped carbons from cotton pulp exhibit improved specific capacitance and stability, providing a new cost-effective carbon-based material for application in the energy storage field.

...