Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 4 de 4
1.
Genet Test Mol Biomarkers ; 28(1): 22-32, 2024 Jan.
Article En | MEDLINE | ID: mdl-38294358

Purpose: Recently, apoptosis-related genes were shown to modulate cancer immunity. However, the role of apoptosis-related genes in the glioma immune microenvironment (GIME) remains unknown. This study aimed to explore the prognostic value of apoptosis-related genes in glioma. Methods: Doxorubicin was used to induce glioma cell apoptosis, and four differentially expressed apoptosis-related genes were identified: CREM, TNFSF12, PEA15, and PRKCD. Kaplan-Meier analyses, receiver operating characteristic curve analyses, and nomograms were established to determine the relationship between risk markers and the prognosis of patients with glioma. Results: Risk biomarkers were significantly associated with overall survival, immune cell infiltration, and immune checkpoints in patients with glioma. Somatic mutations and anti-PD-1/L1 immunotherapy were associated with worse prognosis in the high-risk group receiving anti-PD-1/L1 therapy. The expression of these four apoptosis-related genes was verified using quantitative polymerase chain reaction and immunohistochemistry, and the relationship between these four genes and apoptosis was examined using flow cytometry. Conclusions: This study suggests that apoptosis-related genes play a critical role in shaping the GIME. Assessing the apoptotic patterns of individual tumors will enhance our understanding of GIME infiltration features and lead to improved strategies for immunotherapy.


Glioma , Humans , Prognosis , Glioma/genetics , Apoptosis/genetics , Doxorubicin , Flow Cytometry , Tumor Microenvironment/genetics , Apoptosis Regulatory Proteins
2.
Natl Sci Rev ; 6(4): 758-766, 2019 Jul.
Article En | MEDLINE | ID: mdl-34691931

Patterned materials on substrates are of great importance for a wide variety of applications. In solution-based approaches to material patterning, fluidic flow is inevitable. Here we demonstrate not only the importance of fluidic behavior but also the methodology of engineering the flow pattern to guide the material crystallization and assembly. We show by both experiment and simulation that substrate heating, which is generally used to accelerate evaporation, produces irregular complex vortexes. Instead, a top-heating-bottom-cooling (THBC) set-up offers an inverse temperature gradient and results in a single Marangoni vortex, which is desired for ordered nanomaterial patterning near the contact line. We then realize the fabrication of large-scale patterns of iodide perovskite crystals on different substrates under THBC conditions. We further demonstrate that harnessing the flow behavior is a general strategy with great feasibility to pattern various functional materials ranging from inorganic, organic, hybrid to biological categories on different substrates, presenting great potential for practical applications.

3.
J Phys Chem Lett ; 7(10): 1763-8, 2016 05 19.
Article En | MEDLINE | ID: mdl-27115464

There remain significant gaps in our ability to predict dewetting and wetting despite the extensive study over the past century. An important reason is the absence of nanoscopic knowledge about the processes near the moving contact line. This experimental study for the first time obtained the liquid morphology within 10 nm of the contact line, which was receding at low speed (U < 50 nm/s). The results put an end to long-standing debate about the microscopic contact angle, which turned out to be varying with the speed as opposed to the constant-angle assumption that has been frequently employed in modeling. Moreover, a residual film of nanometer thickness ubiquitously remained on the solid after the receding contact line passed. This microscopic residual film modified the solid surface and thus made dewetting far from a simple reverse of wetting. A complete scenario for dewetting and coating is provided.

4.
ACS Nano ; 8(11): 11493-8, 2014 Nov 25.
Article En | MEDLINE | ID: mdl-25337962

The morphological information on the very front of a spreading liquid is fundamental to our understanding of dynamic wetting. Debate has lasted for years concerning the nanoscopic local angles and the transition from them to the macroscopic counterpart, θ(D). This study of nonvolatile liquids analyzes the interface profile near the advancing contact line using an advanced atomic force microscopy. The interface is found following the macroscopic profile until bending in a convex profile around 20 nm from the substrate. This shoe-tip-like feature is common in partially wetting while absent for completely wetting, and its curvature varies with advancing speed. The observation ends the long-standing debate about the nanoscopic contact angles and their speed dependency. The convex nanobending provides a mesoscopic link and effectively complicates the dynamic wetting behaviors.

...